

Climate, Land Cover, and Management Practice Influences on N₂O Fluxes in South Korea

Sina Berger, Hojeong Kang and Gerhard Gebauer

Contact: gefleckterschierling@gmx.de

Research Questions and Goals of the Project:

How do climate and typical management practices influence N₂O emissions of typical land use systems in Korea?

1) What are the major drivers of N₂O fluxes of typical deciduous forests in South Korea?

- 2) Does plastic mulching affect the N₂O emissions of agricultural soils where typical dry crops are being grown?
- 3) In what way do different water management practices affect the N₂O emissions of rice paddies? Goals:
- \rightarrow To obtain an overview of the amounts of N₂O being emitted from dominant land use systems in Korea
- \rightarrow To obtain a better understanding of soil processes which underlie the N₂O emissions.

Forest - 50% of the total area of the Haean Basin Dry crop farming with PE-mulching - 60% of cropland area Rice paddies - 25% of cropland area

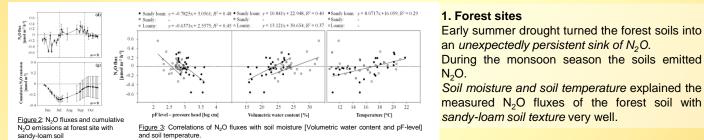

Methods:

Figure 1: Dominant land use systems in Haean-Basin: deciduous forest, dry crop fields with PE-mulching and rice paddies

Closed Chamber Measurements of N₂O fluxes

Isotope abundance analysis of ¹⁵N-N₂O and determination of N₂O concentrations along soil profiles Several other techniques to determine, for example, nitrate concentrations in the soil water, presence or absence of oxygen along rice paddy soil profiles, C- and N-Isotope signatures of soils at different depths and of leaves

Results:

2. Dry crop fields

An unexpected finding was the strong reduction of soil moisture underneath the PE-mulch, which is in contrast to earlier findings.

II paddy

100// 2011 2011 2011 2011 100 2011 100 2011 100 2011 100 2011 100 2011

Equip 6: N_O fluxes and cumulative N_O emissions of rice paddies which experienced a different water management traditional irrigation (TI) with 5 months of flocding

Legards which experienced a different water management: traditional irrigation (TI) with 5 months of floading. Todoting-missions drainage-refloading-most intermittent irrigation without water logging' (FDFM) with 2.5 months of continuous floading before the drainage and intermittent irrigation' (II without continuous floading.

Drier PE-mulch-covered ridges showed less emissions of N₂O than moister non-covered ridges.

0.5

0.3 0.2 E 0.1 0.1 0 0 0.1 0 0.1 0 0 0.1 0.2 0.1

Cumulative N₂O emissio

Figure 4: Mean daily soil moisture and mean daily soil temperature of PE-mulched ridges, non-PE-mulched ridges and furrows

TIp

3. Rice Paddies

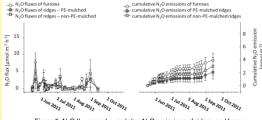


Figure 5: N₂O fluxes and cumulative N₂O emissions of ridges and furrows of a soybean field.

The paddy which experienced the most flooding showed the most N₂O emissions, whereas the driest paddy showed the least emissions, which is an unexpected result. Soil investigations suggested that N₂O producing or consuming processes occurred at 40-50 cm soil depth.

High concentrations of nitrate along the soil profiles leached quickly, independent of the water management practice applied.

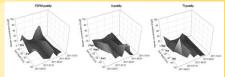


Figure 7: Nitrate concentrations along the soil profiles at the three investigated rice paddies

Conclusions:

N₂O emissions of the study region are in general quite low, which is very pleasing, but raises the question "why?". There is evidence that huge amounts of NO₃ - as the terminal electron-acceptor for denitrification - leach easily due to the soil conditions, so that not much denitrification can occur.

To understand why the N₂O emissions are so low requires a more detailed investigation of the fate of NO₃.