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Abstract
A new methodological framework for plant diversity assessment at the landscape scale is presented that exhibits the following strengths:

(1) potential for easily standardizable sampling procedure; (2) characterization of disturbance regime; (3) use of selected disturbance

descriptors as explanatory variables which probably allow for better transferability than site specific land use types—for example, to evaluate

the emerging use of energy plants that pose novel management challenges without historic precedence to many landscapes; (4) analysis of

quantitative and qualitative aspects of plant species diversity (alpha and beta diversity). For data analysis, a powerful regression method (PLS-

R) was applied. On this basis, after further validation and transferability tests, a practical tool for the development and validation of effective

agri-environmental programmes may be developed.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The EU Sustainable Development Strategy, launched by

EU leaders in Gothenburg in 2001, assigns priority to halting

the loss of biodiversity in the EU by 2010. Accordingly, a

variety of agri-environmental programmes was set up to

reach this goal. Via these programmes, which support

specifically designed farming practices going beyond the

baseline level of ‘‘good farming practices’’ (GFP), farmers

shall be remunerated for specific efforts made for sustaining

ecosystem services, e.g. for management methods support-

ing species diversity and ecosystem sustainability. Since a

new EU law was introduced in 2005 (CAP Reform 2003),

which decouples agricultural payments from production or

mode of land use, the financial attractiveness of agri-

environmental programmes might rise. Now, farmers are
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paid per ha of arable land or grassland managed, and are no

longer subsidized according to the quantity of certain goods

produced or land use activity maintained.

However, those programmes are often assumed to have

positive influence on biodiversity but this has rarely been

proven (Kleijn and Sutherland, 2003). In some cases,

programmes even turn out to be ineffective and miss the

target (Kleijn et al., 2001). Single programmes in limited

areas were successfully set up and evaluated (e.g. Knop

et al., 2006) but, especially over large areas, neither the

effect of the programmes can be assessed nor does their

validation seem feasible (Moser et al., 2002). Most statistical

models for predicting species diversity at the landscape level

are not transferable to other large areas, as they incorporate

extremely detailed information on either abiotic conditions

or land use practices. In addition, data collection is often too

time-consuming and cost intensive to be used as a

standardized tool. Accordingly, an applicable, transferable

and standardized method for quantifying biodiversity at the

landscape scale is needed to serve three purposes: first, to
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develop guidelines for the design of effective agri-

environmental programmes; second, to evaluate their

effectiveness for the maintenance of biodiversity; and third,

to predict the development of plant species diversity under

various land use scenarios.

Thus, the first challenge consists of developing a

standardized method for quantifying and indicating biodi-

versity at these two different levels of observation: within

and between plots or patches. The sampling design is based

on a systematic grid approach developed for biodiversity

assessment in cultural landscapes (Retzer, 1999; Simmering

et al., 2006). The second challenge consists of developing a

method for assessing the underlying factors that determine

plant diversity at these two levels (alpha and beta diversity).

For predictions of biodiversity, the variability and hetero-

geneity of various factors has been tested (e.g. geomorpho-

logic forms by Muller et al. (2004) or land use types

combined with soil data by Haberl et al. (2004) or Wamelink

et al. (2003)). At the landscape scale, Duelli (1997) points

towards variability and heterogeneity of a landscape for

explaining species richness, where ‘‘habitat variability’’

describes the difference between land use types or distinct

land use patches, and ‘‘habitat heterogeneity’’ indicates the

number of such different patches within a given area. Those

models that employ land use as a predictor are very precise

in their forecasting ability (Waldhardt and Otte, 2003;

Waldhardt et al., 2003). However, the number of variables

needed is usually too large and sampling often too time

consuming to develop an applicable, standardized method

from the existing models (Moser et al., 2002). Variables on

land use type are easy to collect; however, they are very

explicit, may be unique to a certain agricultural region and

do not account for novel uses, so that transferability is

limited. Thus, the introduction of new crops or altered

management practices, as may occur in future or in other

regions, cannot be included in the models without additional

training data.

We assume that our approach has the power to overcome

this problem of transferability by using disturbance

parameters, such as disturbance frequency, size and

selectivity, in order to characterize the anthropogenic

disturbance regime. These parameters allow a more precise

and abstract description of dynamic factors in a landscape

than the commonly used surrogate variables of land use type.

A surrogate variable provides an indirect measurement

effect in situations where direct measurement of effects is

not feasible or practical. Disturbance is defined as any

relatively discrete event in time, which disrupts community

structure, changes resources or the physical environment

(Pickett and White, 1985; White and Jentsch, 2001). A

disturbance regime is the sum of all disturbances in a given

landscape, including interacting disturbances. In order to

find suitable factors for the prediction of plant diversity in

cultural landscapes, plant species alpha and beta diversity

values are correlated with both the land use type and the

underlying descriptors of disturbance regime. During the
optimization process of the regression models the use of the

surrogate variable land-use and the very case specific

variable of disturbance type were avoided to demonstrate the

predictive potential of disturbance data. The focus is on

vascular plants as they are easily monitored and their

richness is a good indicator for the richness of many other

taxa (Duelli and Obrist, 1998).

Biodiversity implies much more than counting species. It

is the sum total of genes, species and ecosystems in a region

or the world (quantitative biodiversity), their heterogeneity,

turnover or contrast (qualitative biodiversity) and functional

biodiversity, including variability of function or ecosystem

complexity (CBD, 2001–2005; Beierkuhnlein and Jentsch,

2005). This study incorporates alpha and beta diversity of

higher plants as quantitative and qualitative measures of

vegetation diversity.

Our central hypothesis was that the variability of

disturbance explains plant species richness. Instead of using

the common land use types as predictors, it was proposed

that the heterogeneity of the disturbance regime is a

powerful explanation for plant species richness in cultural

landscapes in Central Europe. In order to provide a first test

for this hypothesis, an easily standardizable sampling

procedure and a mathematical method of data analysis

was executed exemplarily in a mid-elevation, rural area in

north-eastern Bavaria, Germany.
2. Materials and methods

The study area was located at about 600 m a.s.l. within

the Fichtelgebirge in north-eastern Bavaria, Germany. The

highest elevation in the Fichtelgebirge is 1053 m a.s.l.,

geology consists of granite bedrock, precipitation ranges

from 600 to 1200 mm/a. Mean annual temperature at the

highest elevation is 6 8C, the growing season comprises 4

months. Agriculture, hay and silage production, and forestry

are the main forms of land use.

A regular grid of 100 plots was established in a mixed

cultural landscape. It spread over an area of 1600 ha

(4 km � 4 km). The plots were quadratic and covered 1 ha

(100 m � 100 m) each. The grid was positioned randomly

inside a part of the investigated region, which was found

characteristic for the mountain range of the Fichtelgebirge.

The grid was oriented towards North to facilitate plot

identification in the field. In each of the plots, areas of

different land use/disturbance regime were differentiated

and specified as separate patches if their size exceeded 10 m2

(including footpaths and transition patches of >1 m in

width). For each patch, plant species composition, land use

and disturbance descriptors were recorded. A classification

scheme to characterize the land use and disturbance regime

is given in Tables 1 and 2. Important structures, such as

riparian zones, paths, hedgerows and transition zones were

characterized in the same way as, for example, agricultural

areas, forests, meadows or wetlands.
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Table 1

Classification scheme of land use

Classes Sub-classes

Field Cereal stand

Maize stand

Root crop

Green fodder

Rape

Intermediate crop

Path Footpath

Field/forest track

Asphalt road

Gravel road

Cobble road

Trees Single tree

Grove

Shrubbery

Fallow land/succession Young (1–2 years)

Intermediate

Older stage (shrubs)

Old (pre-forest stage)

Complex

Rock Single freestanding

Quarry

Stonewall/heap

Water body Running—regulated

Running—natural

Standing—artificial

Spring

Trench

Boundary Forest margin

Field margin

Meadow margin

Road margin

Hedge

Hedge with trees

Gallery forest

Grassland Dry meadow

Fertile meadow

Wet meadow

Forest (>100 qm) Mature spruce stand

Young spruce stand + mature trees

Compound spruce forest

Felling area

Decidous forest

Settlement Farm yard

Single house

Table 2

Classification scheme of disturbance regime

Disturbance type Felling (undefined)

Clear felling

Femel felling

Felling due to beetle damage

Felling for density control

Removal of dead wood

Wood storage and movement

Skidding track

Collapsed tree

Biomass input

Wild boar disturbance

Compactation by trampling

Compactation by vehicles

Pond drainage

Agricultural use

Mowing

Flooding

Pesticides

Building works, soil/rock movements

Dimension space

Disturbance size Punctiform/linear

1/4 of areal

1/2 of areal

3/4 of areal

Complete areal

Disturbance form Linear

Laminar

Punctiform

Disturbance distribution Homogen

Heterogen

Dimension time

Disturbance frequency Every 100 years

Every 10 years

Annual

Twice a year

Three times a year

Greater than three times a year

Steady in time

Steady intense in time

Disturbance seasonality 1. Quarter of the year

1. +4. Quarter

1. �3. Quarter

1. �4. Quarter

2. Quarter

2. �3. Quarter

2. �4. Quarter

3. Quarter

3. �4. Quarter

4. Quarter

Disturbance duration <1 day

<1 week

<1 month

<1 year

>1 year

Selectivity of disturbance None

Age

Species

Location

Land parcel boundary
2.1. Statistical analyses

Partial least squares regression (PLS-R) was used to

describe and analyse the relation between plant species

richness within each plot (alpha diversity) and the land-use

or disturbance descriptors. Secondly, similarity indices were

calculated between plots for species similarity (beta

diversity) and similarity of land use or disturbance

parameters. These indices were then correlated with each

other using Mantel tests.
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Several regression analyses (PLS-R) were carried out,

including different sub-sets of the data as explanatory

variables, to predict species richness within plots. Four

different sub-sets of data were used: (a) the quantitative and

qualitative land-use data (Table 1; results in the text) to be

used as a reference value of desirable predictive power, (b)

the number of patches differentiated within each plot and all

disturbance descriptors (Table 2; results in Table 3 model I),

(c) the disturbance descriptors only (Table 2; results in

Table 3, model IV) and (d) parameters of disturbance

frequency and seasonality only (Table 2; results in Table 3,

model VI). Each of the three disturbance models (Table 3,

models I, IV, VI) were then optimized by selecting only

significant parameters and by reducing the number of

variables to a few easily collected parameters. The

significance of the variables for the model was determined

by uncertainty tests carried out within a full cross validation

(jack-knifing procedure). The further selection process was

achieved by excluding variables that explain redundant

variance. This was easily accomplished by the comparison

of the principal component specific loading weights and

visual selection from the ordination plot.

In addition to the qualitative variables, such as

‘‘disturbance event restricted to the third quarter of the

year’’ in the form of presence/absence data (Tables 1 and 2),

quantitative fuzzy variables were used: ‘‘number of different

land-use classes‘‘, ‘‘number of different land-use sub-

classes’’, ‘‘number of different patches’’, ‘‘number of

different disturbance frequencies’’ and ‘‘number of different

disturbance seasonalities’’ that occur within each plot.

Partial least squares regression (PLS-R) is a further

development of principal component regression (PCR),

where the explanatory variables are bundled with the help of

a principal component analysis (PCA) and the derived

components replace the independent variables during the
Table 3

PLS-R models predicting plant species richness (alpha diversity) using disturban

Selection of explanatory variables Number

I. Number of zones within each plot + all disturbance parameters

(quantitative and qualitative)

3

II. Reduction to significant variables (after jack-knifing) 2

III. Reduction by eliminating redundant information 2

IV. All disturbance parameters (quantitative and qualitative) 3

V. Reduction to significant variables (after jack-knifing) 2

VI. Parameters of disturbance frequency and seasonality

(quantitative and qualitative)

2

VII. Reduction to significant variables (after jack-knifing)

and by eliminating redundant information

2

Three different subsets of the data were selected as starting point for the modelli

explanatory variables are then reduced step by step leading to models III, Vand VII

validation.
a Model variables: number of zones within each plot, number of different d

disturbance during the second quarter of the year.
b Model variables: number of different disturbance seasonalities, number of di

year, disturbance during the second quarter of the year.
regression (Bastien et al., 2005). PLS-R was used, as it

allows the mix of quantitative and qualitative explanatory

variables within the same analysis. With PLS-R, over-fitting

by strongly correlated variables, as often found in multiple

regression analyses, is avoided as the number of factors is

reduced to only a few principal components. Using PLS-R,

the complete set of factors can be included in the analysis—

in contrast to step-wise procedures of multiple regressions,

the reduction or grading of variables is not necessary (ter

Braak and de Jong, 1998; Abdi, 2003, for applications see,

e.g. Dangles et al., 2004).

Beta diversity – the turnover in species composition along

a gradient (according to Whittaker, 1972) – can be

calculated with so-called proximity measures. For the

analysis on hand, the Sørensen Similarity Index was used.

Similarity between neighbouring plots concerning their land

use and disturbance characteristics for presence/absence

data was calculated with the Sørensen Index as well, while

the Bray-Curtis Index was used for quantitative variables.

Beta diversity of plant species and the corresponding

similarity of land use or disturbance regime between

neighbouring plots were then correlated using Spearman r

correlation. Significance was determined using Mantel tests

(1000 iterations). The following Software was used:

SIGMAPLOT 9.0 (Systat, 2004), The Unscrambler v8.0

(CAMO, 2003), R 2.1.1. (R Developing Core Team, 2005),

VEGAN 1.6-10 (Oksanen et al., 2005) and ARCGIS 9.1

(ESRI, 2005).
3. Results

Predictive power of the qualitative and quantitative land-

use data for alpha diversity was high (R2 = 0.75, root mean

square error: 15.9 (11%), number of variables: 54 and
ce data

of PLS axes R2 RMSE Prediction

error in %

Number of

variables

0.76 15.3 10 43

0.77 15.0 10 17

0.73 16.4 11 4a

0.73 16.52 11 42

0.74 15.9 11 17

0.72 16.8 12 12

0.72 17.0 12 4b

ng process (see models I, IV and VI). Maintaining high model quality, the

. RMSE: root-mean-square-error of prediction (typical error) from full cross-

isturbance seasonalities, disturbance during the first quarter of the year,

fferent disturbance frequencies, disturbance during the forth quarter of the
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Fig. 1. Predicted plant species richness per plot vs. observed richness. The

parameters of the underlying model are documented in Table 3, model VII.
number of PLS axes: 3). As it was attempted to reach good

predictions without including explicit land use data this

information was not used for further models. Table 3

presents the results of different PLS-R Models which

reached equally high predictive force including disturbance

data, only. The initial set of variables consisted of the

complete set of disturbance parameters and the absolute

number of recorded patches within each plot (Table 3,

model I-III). The model quality (model I) was high

(R2 = 0.76). The process of variable reduction lead to a

final number of four model parameters (via models II to III).

The model quality remained high (R2 = 0.73). The number

of differentiated patches within each plot was excluded

within models IV–VII. In model IV–V, the parameters

included were limited to the disturbance regime. The

predictive power remained high (R2 = 0.74). The dynamic

components of the disturbance regime (disturbance

frequency and seasonality) showed major predictive forces

within model V (not shown). Therefore further models were

calculated selecting the parameters of disturbance fre-

quency and seasonality as initial variables (models VI and

VII). The parameters of disturbance frequency and

seasonality predicted 72% of the variability of species

richness (model VI). Again, the reduction of variables

brought forward a model including only four variables

(model VII) with high model quality and high predictive

power (R2 = 0.72). The results showed good fit concerning

the predicted species richness versus observed species

richness (Fig. 1). The remaining significant variables for

this prediction are: (1) number of disturbance frequency

types, (2) number of disturbance seasonality types, (3) the

presence or absence of disturbance events restricted to the

second quarter of the year and (4) the presence or absence of

disturbance events restricted to the forth quarter of the year

(Table 3, model VII).
Fig. 2. Patterns of (a) alpha and (b) beta diversity (here expressed as negative Søre

way between the plots, where beta diversity values were calculated. Beta-divers
The patterns of alpha diversity (Fig. 2a) were found very

dissimilar to the pattern of beta diversity (Fig. 2b). To

analyse underlying factors correlated with beta diversity

pattern, species similarity of neighbouring plots was

correlated with the corresponding similarity of the land

use and disturbance parameters (Table 4). The highest

Spearman r coefficient was found when correlating species

similarity values with the data sub-set including all variables

used to characterize disturbance (see Table 2). If similarity

of disturbance regime was calculated including only the

subset with different frequencies of disturbance, correlation

changed by only a little and remained high (Table 4). In

summary, the variability of disturbance rhythm was a

powerful predictor for beta diversity patterns of vegetation.
nsen similarity). The squares mark the sample plots, + marks the points half

ity was interpolated over the area via kriging.
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Table 4

Correlation of plant species beta diversity (species similarity) with the similarity patterns of land use and disturbance regime

Data sub-set used for correlation with beta diversity Spearman r

Similarities of the complete disturbance regime data incl. land use classes and sub-classes 0.75

Similarities of land-use classes and sub-classes 0.69

Similarities of disturbance regime 0.76

Disturbance regime: dimension time only (Table 1b) 0.68

Disturbance regime: frequency only (Table 1b) 0.59

The Spearman r coefficients are significant according to Mantel tests ( p < 0.001).
4. Discussion

The analyses confirm the high predictive power of land

use data for diversity of plant species (alpha and beta

diversity), but they also bring forward the possibility to

substitute information on land use with selected parameters

of the disturbance regime for prediction. Even the

quantitative variable ‘‘number of patches differentiated

within each plot’’ needed not be added to the model to derive

a good predictive force. This demonstrated the high

forecasting ability of disturbance descriptors. The diversity

of disturbance rhythm characterized by disturbance ‘‘fre-

quency’’ and ‘‘seasonality’’ most accurately described alpha

diversity of plant species at the plot scale. Diversity of

disturbance rhythm was also highly correlated with beta

diversity of vegetation at the landscape scale. Accordingly,

the use of disturbance frequency and seasonality as a

mechanistic expression of the diversity of rhythm in land use

provides enough information for characterizing the main

variability of plant diversity in the study area. The

application of a prediction scheme based on disturbance

frequency and seasonality could therefore be of relevance

for the creation and evaluation of agri-environmental

programmes.

Prediction models for the pattern of beta diversity have

not yet been included in our analyses. However, the good fit

in Spearman correlation comparing the similarity of species

and disturbance parameters between plots indicated the

potential of disturbance parameters to describe plant species

similarity patterns. The evaluation of the impact of agri-

environmental programmes on beta diversity via disturbance

data would be an important development.

The question of transferability and the possible

necessity of inclusion of further factors such as soil type

will have to be a matter of further investigation. According

to Waldhardt et al. (2004), soil type is also a factor of major

relevance in predicting plant species richness in agricul-

tural ecosystems. However, because land use is partially

determined by soil type, much of the patchiness in soil type

is strongly correlated with land use type and consequently

with parameters of the anthropogenic disturbance regime.

It might therefore not be necessary to include soil

characteristics in the models if disturbance data are used.

An example of such a correlation is the low frequency of

mowing in either nutrient poor meadows or wet meadows.
In both cases, local plant species richness is inversely

correlated with disturbance frequency. This agrees well

with theory from disturbance ecology (Huston, 1994;

White and Jentsch, 2001). However, in regions of high

geological variation, the soil characteristics might be

necessary factors for good predictions. Additionally, there

is further potential to ameliorate the models by including

interaction terms. Such an optimization process, however,

will only be useful on a wider data basis, as otherwise the

local specificity of the area will be overrepresented in the

model. Applicability of the method for future evaluation

and prediction of plant species diversity is very high,

because the necessary data acquisition can be reduced to

sampling only a small set of disturbance parameters.

Furthermore, sampling is very effective due to the use of a

systematic grid (Austin, 1981; Beierkuhnlein, 1999) and

shortcomings of a preferential sampling design are

minimized (Colbach et al., 2000).

A general problem of all agri-environmental programmes

is that, though land use may be changed due to funding,

regeneration of plant diversity is often limited due to a lack

of soil seed banks, seed input and recruitment (Bischoff,

2005). Also, remaining chemical and structural soil

properties may hinder the performance of many species

(Dupouey et al., 2002). Therefore, the main target of

environmental programmes has to be the conservation of

existing species richness. In very homogeneous landscapes,

where species diversity has already declined, the validation

process can only take place after several years of

regeneration plus specific restoration plans. Otherwise,

validation with the present models would dramatically

overestimate actual species richness.

In contrast to other approaches of predicting species

richness (e.g. Schwab et al., 2002; Dauber et al., 2003;

Ernoult et al., 2003; Wilson et al., 2003; Waldhardt et al.,

2004), the use of disturbance data offers the advantage of

allowing for easy adaptation to upcoming, novel types of

land use, e.g. new crops such as energy plants. This is an

additional strength in contrast to the widely used evaluation

systems based on indicator species. Plant species richness

seems a better indicator for ecosystem functioning and

sustainability of a landscape than indicator species (Loreau

et al., 2001; Beierkuhnlein and Jentsch, 2005; Hooper et al.,

2005). However, the use of rare species to define areas of

special protection status, as outlined in the FFH guidelines,
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is an important supplement to an approach for cultural

landscapes as presented here.
References

Abdi, H., 2003. Partial least squares. In: Lewis-Beck, M., Bryman, A.,

Futing, T. (Eds.), Encyclopedia of Social Sciences Research Methods.

Sage, Thousand Oaks, CA, pp. 1–7.

Austin, M.P., 1981. Permanent quadrats: an interface for theory and

practice. Vegetatio 46, 1–10.

Bastien, P., Esposito Vinzi, V., Tenenhaus, M., 2005. PLS generalised

regression. Comput. Stat. Data Anal. 48, 17–46.

Beierkuhnlein, C., 1999. Rasterbasierte Biodiversitätsuntersuchungen
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206.

Beierkuhnlein, C., Jentsch, A., 2005. Ecological importance of species

diversity. In: Henry, R.J. (Ed.), Plant Diversity and Evolution: Genotypic

and Phenotypic Variation in Higher Plants. CAB International, pp. 249–

285.

Bischoff, A., 2005. Analysis of weed dispersal to predict chances of re-

colonisation. Agric. Ecosyst. Environ. 106, 377–387.

CAMO, 2003. The Unscrambler 8. CAMO Process AS, Oslo.

CBD, 2001–2005. Biodiversity—The Web of Life. Secretariat of the

Convention on Biological Diversity. United Nations Environmental

Programme. http://www.biodiv.org.

Colbach, N., Dessaint, F., Forcella, F., 2000. Evaluating field-scale sampling

methods for the estimation of mean plant densities of weeds. Weed Res.

40, 411–430.

Dangles, O., Gessner, M.O., Guerold, F., Chauvet, E., 2004. Impacts of

stream acidification on litter breakdown: implications for assessing

ecosystem functioning. J. Appl. Ecol. 41, 365–378.

Dauber, J., Hirsch, M., Simmering, D., Waldhardt, R., Otte, A., Wolters, V.,

2003. Landscape structure as an indicator of biodiversity: matrix effects

on species richness. Agric. Ecosyst. Environ. 98, 321–329.

Duelli, P., 1997. Biodiversity evaluation in agricultural landscapes: an

approach at two different scales. Agric. Ecosyst. Environ. 62,

81.

Duelli, P., Obrist, M.K., 1998. In search of the best correlates for local

organismal biodiversity in cultivated areas. Biodivers. Conserv. 7,

297.

Dupouey, J.L., Dambrine, E., Laffite, J.D., Moares, C., 2002. Irreversible

impact of past land use on forest soils and biodiversity. Ecology 83,

2978–2984.

Ernoult, A., Bureau, F., Poudevigne, I., 2003. Patterns of organisation in

changing landscapes: implications for the management of biodiversity.

Landsc. Ecol. 18, 239–251.

ESRI, 2005. ArcGis 9.1. Redlands.

Haberl, H., Schulz, N.B., Plutzar, C., Erb, K.H., Krausmann, F., Loibl, W.,

Moser, D., Sauberer, N., Weisz, H., Zechmeister, H.G., Zulka, P.,

2004. Human appropriation of net primary production and species

diversity in agricultural landscapes. Agric. Ecosyst. Environ. 102,

213–218.

Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S.,

Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setala,

H., Symstad, A.J., Vandermeer, J., Wardle, D.A., 2005. Effects of

biodiversity on ecosystem functioning: A consensus of current knowl-

edge. Ecol. Monogr. 75, 3–35.
Huston, M., 1994. Biological Diversity. Cambridge University, Cambridge.

Kleijn, D., Sutherland, W.J., 2003. How effective are European agri-

environment schemes in conserving and promoting biodiversity? J.

Appl. Ecol. 40, 947–969.

Kleijn, D., Berendse, F., Smit, R., Gilissen, N., 2001. Agri-environment

schemes do not effectively protect biodiversity in Dutch agricultural

landscapes. Nature 413, 723–725.

Knop, E., Kleijn, D., Herzog, F., Schmid, B., 2006. Effectiveness of the

Swiss agri-environment scheme in promoting biodiversity. J. Appl.

Ecol. 43, 120–127.

Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A.,

Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D.,

Wardle, D.A., 2001. Ecology—biodiversity and ecosystem functioning:

current knowledge and future challenges. Science 294, 804–808.

Moser, D., Zechmeister, H.G., Plutzar, C., Sauberer, N., Wrbka, T., Grab-

herr, G., 2002. Landscape patch shape complexity as an effective

measure for plant species richness in rural landscapes. Landsc. Ecol.

17, 657–669.

Muller, C., Berger, G., Glemnitz, M., 2004. Quantifying geomorphological

heterogeneity to assess species diversity of set-aside arable land. Agric.

Ecosyst. Environ. 104, 587–594.

Oksanen, J., Kindt, R., O’Hara, R.B., 2005. Vegan: Community Ecology

Package. Version 1, pp. 6–10.

Pickett, S.T.A., White, P.S., 1985. Patch dynamics: a synthesis. In: Pickett,

S.T.A., White, P.S. (Eds.), The Ecology of Natural Disturbance and

Patch Dynamics. Academic Press Inc., San Diego, pp. 371–384.

R Developing Core Team, 2005. R 2.1.1. A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing, Vienna.

Retzer, V., 1999. Charakterisierung und Vergleich der Vegetationsdiversität

zweier Kulturlandschaften. In: Beierkuhnlein, C. (Ed.), Rasterbasierte
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