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Vector-borne diseases are on the rise globally. As the consequences of climate
change are becoming evident, climate-based models of disease risk are of
growing importance. Here, we review the current state-of-the-art in both
mechanistic and correlative disease modelling, the data driving these models,
the vectors and diseases covered, and climate models applied to assess future
risk.We find thatmodelling techniques have advanced considerably, especially
in terms of using ensembles of climate models and scenarios. Effects of
extreme events, precipitation regimes, and seasonality on diseases are still
poorly studied. Thorough validation of models is still a challenge and is com-
plicated by a lack of field and laboratory data. On a larger scale, the main
challenges today lie in cross-disciplinary and cross-sectoral transfer of data
and [448_TD$DIFF]methods.

Spatiotemporal Models of Vector- [436_TD$DIFF]Borne Diseases under Climate Change: An
Overview
Modelling spatial patterns and temporal trends in vector-borne diseases (VBDs [452_TD$DIFF]; see
Glossary) has been done through a diversity of approaches. This field of research is very
active and shows a rapid methodological development with regard to the inclusion of various
drivers of diseases.

Models applied in this field are commonly divided into two groups. First, ‘correlative’ models
predict a species’ geographic distribution or support the understanding of why populations
persist at a certain place. Thereby, both vector and pathogen occurrences can be used as
response parameters. For this, various approaches, ranging from simple regression to
advanced machine-learning techniques, are employed [1].

Secondly, ‘mechanistic’ or process-based models make explicit assumptions about the
biological [2] and environmental mechanisms that drive species’ distributions or infection
dynamics. In epidemiology, these models are mainly derived from the Ross–MacDonald model
(compare e.g., [3]). These models are based on a system of differential equations depicting
each infectious stage for vectors and/or hosts. Important epidemiological parameters, such as
vector biting rates, vector development, and mortality rates, and the extrinsic incubation
period (EIP), largely depend on rainfall and temperature. The empirical relationship between
climate and these epidemiological parameters is derived from laboratory and, less frequently,
field experiments.

The individual strengths and weaknesses, as well as the underlying paradigms, of these two
approaches have led to heated discourse (compare [4] and [5]). However, both approaches
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exhibit specific qualities [2,6], and some authors explore promising hybrid approaches (e.g.,
[7–9]).

Model approaches for VBD risk assessment need to consider both positive and negative
aspects of altered climatic conditions across different spatial and temporal scales. Global
warming may shift climatically suitable regions for vector establishment and disease transmis-
sion to higher latitudes and higher elevations. Conversely, it may limit transmission of VBD in the
warmest places, where temperature thresholds for vector or pathogen survival may be
exceeded [10,11].

Expectations for long-term climatic trends are mostly robust, particularly as far as average
conditions in air temperature are concerned. Projections on future development of medium-
term variability [453_TD$DIFF][manifested in climatic phenomena such as the North Atlantic Oscillation (NAO)
or the El Niño Southern Oscillation (ENSO [454_TD$DIFF])] are very uncertain [12]. This is a challenge,
because interannual and even multidecadal climatic fluctuations are affecting VBD transmis-
sion in some parts of the world [13]. Furthermore, long-term climatic trends affect the
probability of extreme temperature and rainfall events, making them less rare in occurrence
and more elusive [14]. Even though heat or cold waves, drought, or flooding are important for
disease emergence, vector abundance, and pathogen transmission dynamics, such events
can hardly be predicted [15].

In this article we review recent advances in modelling the impacts of climate change (Box 1) on
VBD, providing an overview of the literature published since 2014. We discuss primarily
mosquito-borne diseases that are monitored by the European Centre for Disease Prevention
and Control (ECDC), focusing on the applied models as well as on the data driving them.

Correlative Models
Environmental niche models (ENMs), and their spatial application as species distribu-
tion models (SDMs), have become an integral tool in the fields of biogeography, ecology,
and conservation biology. Different modelling tools and algorithms with individual strengths
and weaknesses exist, but the general concept remains the same (Figure 1). First, locations
of a target species are collected in the field or derived from existing data. Some modelling
tools require knowledge of the locations where target species are truly absent, but as this is
difficult to acquire for various reasons [1], pseudo-absence or background data are
commonly generated instead [16]. The difficulty of finding high-quality presence/absence
data of vectors or pathogens is an important limitation for correlative niche models. Spatial
data representing environmental parameters relevant to the species in question (such as
climate, land use, soil type etc.) are acquired, usually in the form of continuous grids
covering the study area.

Glossary
Area under the curve (AUC): the
area under the ROC curve (see
below) is commonly used for
assessing a model’s performance in
distinguishing between (in this
context) the presence or absence of
a species. An AUC of 1 is
considered a ‘perfect’ model, while a
value of 0.5 indicates that the model
is not better than a random guess.
Environmental niche model
(ENM): a model that estimates the
ecological niche (or aspects thereof)
of a species based on the
environmental conditions at locations
where the species is known to exist.
It can be used to examine species–
environment relationships or as a
species distribution model (SDM) in
order to predict (changes in) species
occurrences in space and time.
Extrinsic incubation period (EIP):
the time that needs to pass after a
vector’s infectious blood meal before
it can transmit the pathogen to
another host.
Global climate models or general
circulation models (GCMs):
models that are used to simulate the
earth’s climate on a large scale (see
Box 2 for details).
Intergovernmental Panel on
Climate Change (IPCC): the IPCC
defines itself as the ‘international
body for assessing the science
related to climate change’. Its
assessment reports aim to make the
state-of-the-art in climate research
accessible for policy makers and
provide the scientific basis for the UN
Climate Conferences.
Receiver operating characteristic
(ROC): the ROC curve is used when
a continuous model output (e.g.,
probability of presence of a species)
is translated into binary information
(e.g., presence/absence of the
species). It illustrates how the ratio of
true vs. false positives varies with
different thresholds for the distinction
between positive and negative.
Regional climate models (RCMs):
models that can be seen as
refinements of GCMs that are able to
better reflect local conditions on
smaller spatial scales (see Box 2 for
details).
Representative concentration
pathways (RCPs): RCPs succeed
the older SRES scenarios (see
below).

Box 1. Climate Change in Europe

During the 20th century, most of Europe experienced an increase in annual surface air temperature of about [442_TD$DIFF]0.8�C,
mostly with a stronger warming in winter than in summer. At the same time, some parts of southern Europe have dried
by as much as 20% while precipitation increased by 10–40% over northern Europe [114]. Warm night and daytime
temperature extremes increased, cold temperature extremes decreased, and many regions are faced more frequently
with heavy-rain days [115]. Expectations for the future vary by region and season. While temperatures are generally
expected to increase across the continent, this will be more pronounced in the summer in southern Europe (Figure IA)
and in the winter in northern and eastern Europe (Figure IB). Projections for changes in precipitation are subject to
relatively high uncertainties. The general trends, however, are reduced rainfall in the south and increased precipitation in
the north. At intermediate latitudes, there are opposing effects in the different seasons, with dryer summers and wetter
winters (Figure IC,D).
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SEIR/SIR: susceptible, exposed,
infectious and recovered are the
stages of an infection an individual
can typically go through. They make
up the different compartments of a
typical mechanistic disease model.
Special Report on Emissions
Scenarios (SRES): this report,
published by the IPCC, introduced a
range of scenarios for how emissions
of greenhouse gases may change in
the future, depending on how
mankind reacts to the challenges of
climate change. These scenarios
have been the basis for IPCC
assessment reports, policy making,
and climate modelling, but by now
have been superseded by the
representative concentration
pathways (RCPs).
Species distribution model (SDM):
SDMs are used to estimate the
geographical distribution of a species
(or other taxonomic rank). They are
often, but not always, based on an
environment niche model (ENM).
Vector-borne diseases (VBDs):
illnesses in humans or other
vertebrates that are mainly
transmitted by other animals � often
bloodsucking insects such as
mosquitoes.

In the second step, a multivariate regression model is created. From an ecological per-
spective, loosely following the Hutchinsonian niche concept [17], this can be seen as
constructing a virtual space representing all possible combinations of values of the chosen
environmental parameters. From the location of the presence (and, when available,
absence) of records within this environmental space, the environmental niche of the target
species is constructed using methods ranging from simple multiple linear regression
models to advanced machine-learning techniques. This model of the species’ preferred
environmental conditions is then projected back into geographical space, producing a map
depicting how suitable the environmental conditions are for the species in each grid cell of
the study area. Since functional features, such as dispersal barriers, cannot be directly
included in this kind of model, environmental suitability cannot be easily translated into
probability of occurrence. Instead, it should be perceived as an indicator for a particular
species’ ability to survive at a given location if some individuals were to reach this place. On

These climatic changes have an impact on vectors’ habitats. Winter warming may promote overwintering of vectors.
Increased precipitation could lead to increased habitat availability due to increased soil moisture, humidity, and
availability of natural ponds. Extreme flooding can lead to the destruction of vectors’ habitats, through flushing of
stagnant water bodies, but at the same time it can create new breeding grounds when the water recedes [116]. Lower
summer rainfall in theMediterranean couldmake suitable breeding sites scarce� or have the opposite effect if it leads to
more open containers being used for water supply and irrigation.
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Figure I. Climate Change in Europe. Simulated differences in temperature (A,B) and rainfall (C,D) between 2065 and
2085, and between 1961 and 1999, under the representative concentration pathway (RCP) 4.5 scenario based on 16
global climate model (GCM). A,C. Boreal summer (June–August). B,D. Boreal winter (December–February). Cross
hatching indicates areas of high uncertainty due to low agreement of the different GCMs.
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Figure 1. Characteristic Workflow of an Environmental Niche Model (ENM). (A) Occurrence records for the
vector, host, or disease in question are acquired. (B) A set of predictor variables selected (here exemplarily: p1 = summer
temperature in �C, p2 = winter temperature in �C, p3 = annual precipitation in mm). (C) Based on these factors, the best fit
model that describes the probability of occurrence of the species in (multivariate) dependence to its environmental
conditions is developed (here simplified: environmental suitability in dependence of p1–3). Ideally, several different
algorithms are utilized. (D) A spatial projection of the model is made based on the predictor variables. (E) A set of future
climate change scenarios and relevant time frames is chosen. Shown here is the observed past and expected future
average temperature change over time for an optimistic (blue) and a pessimistic (red) climate change scenario. Color
shadings around the black lines show an estimate of the uncertainties. (F) Using data from global or regional climate
models, further projections for the selected scenarios and time frames (grey vertical bars in panel E) are made. Ideally,
different climate models are used to drive the ENM.
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smaller spatial scales, it may be feasible to conduct extensive field collections of species that
allow for an estimate of abundance rather than just simple presence or absence. Based on
these data, species abundance models can be created in a very similar fashion (e.g., [18]).

In a third step, the prepared model can be used to identify the species’ potential to become
established in other parts of the world by using the same set of environmental predictors but for
a different region as a reference for the projection. Similarly, projections over time can be made
by using environmental data that follow historical emissions for the past or emission scenarios
for the future [455_TD$DIFF][such as global climatemodels (GCMs) or regional climatemodels (RCMs);
Box 2[456_TD$DIFF]].

In epidemiology, ENMs are commonly used to map the potential distribution of vector species
(Table 1). For simple disease systems, this alone can give a reasonably good estimate of regions
that could be affected by pathogen transmission [1], although abundance models should be
preferred whenever possible due to the more differentiated picture they provide. For more
complex systems, such as those consisting of multiple different hosts, reservoirs and/or vectors,
focusing on a single target species is often insufficient, as different species are likely to have
different environmental requirements and competence to transmit diseases. In this particular
case, the potential distributions of the different species involved can be modelled as separate
components. The expected geographical ranges of these species can then beoverlaid in order to
derive areas of elevated risk of transmission [19]. For diseases where the involved species, their
contribution todisease transmission, or their spatial distribution areunknown, thedevelopment of
an ENM based on observed occurrence of the disease can be helpful [1]. In a way, this approach
considers a pathogen and its transmission range as a species and its established populations.
Regarding ectotherm arthropod vectors, this approach has the advantage of being able to
additionally account for thermal impacts on the pathogen itself, such as the temperature-depen-
dence of the EIP observed for several viral diseases [20].

While free and open-source software packages (like dismoi [446_TD$DIFF] or biomod2ii for R; see https://
www.r-project.org/) make the development of ENMs relatively easy from a technical point of
view. There are several aspects that need to be considered carefully in order to gain meaningful
results [1,21]. These include, for instance, sampling bias in the occurrence records [22], the
regions where pseudo-absence locations are drawn from [23], potential niche-shifts of invasive
species [24], and the choice of meaningful environmental predictors [25,26].

Thorough out-of-sample validation of a model is crucial; and there are numerous evaluation
methods available for different kinds of ENM. While these evaluation methods have been
reviewed elsewhere [27], it seems worth pointing out that the area under the curve (AUC) of
the receiver operating characteristic (ROC), one of the most widely applied evaluation
metrics, has been criticized for being potentially misleading (e.g., [28]).

Among the techniques available, Maxent [29] has been by far the most popular choice for
studies of climate change impact on vector-borne diseases over the past few years (Table 1).
This is somewhat surprising as there are several other established methods available [458_TD$DIFF][such as
Bioclim, Boosted Regression Trees (BRT), Random Forest (RF), Generalized Linear Models
(GLM), Generalized Additive Models (GAM), or Genetic Algorithm for Rule-set Production
(GARP)] and from the numerous studies comparing their performances (e.g., [30–32]) no
preferential method has emerged so far. Consequently, there is a new trend towards using
an ensemble of different ENMs to make up for the uncertainties inherent to the individual
algorithms [31,33].
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Most ENM-type models applied in disease modelling focus on vector distributions (Table 1).
Among these, the most studied vector genus is Aedes (competent mosquito vector for
diseases such as dengue, chikungunya, or Zika) followed by Anopheles (malaria mosquito
vectors) and Lutzomyia (sand flies, vectors of leishmaniasis). While several ENM-type models
for complete disease systems have been published recently [7,34–36], only a few of them
feature future projections under climate-change scenarios [20]. The projected future changes in
vector ranges vary among species and regions. However, there is a general trend of range
expansion towards higher latitudes and altitudes, while some of the regions that are most
affected by VBD today may benefit from a decline in environmental suitability under climate
change (Table 1).

ENM-type models are commonly applied across all spatial scales. When it comes to future risk
mapping, however, they are mostly used on larger global to continental scales (Table 1).
Consequently, most studies use global rather than regional climate models. Almost half of the
studies in Table 1 incorporate data frommore than one climate model. This is good practice, as
this leads to better estimates of uncertainty in final model output [37].

Regarding the predictors being used, most models rely mainly on various metrics applied to
temperature and precipitation (and combinations thereof, such as ‘precipitation of the warmest
month’), both of which have been identified as important drivers of VBD transmission [38].
Some models additionally use other input parameters that may influence host or vector
distribution, such as measures of air moisture [39–42], soil moisture [43], topography [42–
45], or land cover/land use [42,43,46]. Socioeconomic factors, such as human population
density or vulnerability indicators, can be included as well (e.g., [7]), but continuous future
projections of these are often not available, and they are subject to large uncertainties.

One main advantage of ENMs compared to mechanistic approaches is the non-necessity of
detailed knowledge about the complex interplay between environment, vectors, hosts, and

Box 2. Climate Models and Scenarios

General circulation models (GCMs), also called global climate models, are used to simulate the earth’s climate at large
spatial scales and estimate its long-term future development. They usually consist of several coupled components such
as the atmosphere, ocean dynamics, sea ice, and vegetation. International efforts in climate modelling are coordinated
through the Coupled Model Intercomparison Project (CMIP, http://pcmdi-cmip.llnl.gov), and GCM output data are
made available through the various data nodes of the Earth System Grid Federation (ESGF, https://esgf.llnl.gov). Since
running GCM simulations is computationally expensive, some finer-scale processes, such as convection, have to be
heavily parameterized in global-scale models. However, regional climate models (RCMs) driven by a GCM can be used
to make up for this on smaller spatial scales. The Coordinated Regional Downscaling Experiment (CORDEX, http://
www.cordex.org) provides a common framework for such initiatives.

The Intergovernmental Panel on Climate Change (IPCC) provides the scientific basis to assess climate change, suggest
adaptation andmitigation strategies, and highlight impacts and future risks for decision-makers. The IPCC assessments
are compiled by hundreds of leading and volunteering scientists, they undergo multiple rounds of review to ensure
objectivity, and underlie negotiations at the Conferences of the Parties (COP) of the United Nations Framework
Convention on Climate Change (UNFCCC). In the latest assessment, the Fifth Assessment Report in 2013, new
climate-change scenarios, so-called representative concentration pathways (RCPs), were developed. They describe a
wide range of possible magnitudes of climate change by specifying concentrations and corresponding emissions.
Although not directly based on socioeconomic storylines like the former IPCC Special Report on Emissions
Scenarios (SRES), they are additionally based on short-lived gases and land-use changes [117]. The start-point
for all four RCP scenarios is 2006, with a baseline historical period from 1986 to 2005. These RCP [443_TD$DIFF]x scenarios lead to a
defined additional radiative forcing by 2100 (increase by [444_TD$DIFF]xW/m2

[441_TD$DIFF]), which can also be expressed as an increase in the
global mean surface temperatures for 2081–2100. This increase for the different RCPs is expected to range between
[445_TD$DIFF]0.3�C and 1.7�C (RCP2.6), 1.1�C and 2.6�C (RCP4.5), 1.4�C and 3.1�C (RCP6.0), 2.6�C and 4.8�C (RCP8.5) [118].
Both global and regional climate models rely on these pathways for future projections of climate change.
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Table 1. Recent Studies Using Environmental Niche Models (ENMs) to Assess Vector- [436_TD$DIFF]Borne Disease Risk under Climate Change

Vector/pathogen
modelled

ENM Climate modela/scenariob/
future time periodc

Environmental
variables

Country, region Main findings Refs

Aedes aegypti MaxLike NAd/RCP 4.5, RCP 8.5/
current, 2020s, 2080s

te, pf Veracruz, Mexico Data from the edges of the vector’s distribution is
valuable for
- monitoring changes in distribution
- understanding links between anthropogenic
drivers and climate change

[97]

Climate envelope GCM: CCCma-CGCM2,
CSIRO-MK2, NIES99, UKMO-
HadCM3/A2a, B2b/2020s

t, p Global - macroclimate is the main driver of the species
range limits
- anthropogenic influence can help the species to
survive in otherwise unsuitable climate

[98]

Maxent NA/A2a/2050s t, p Brazil - the vector’s range in Brazil will decrease in the
future, but will spread further south

[99]

Maxent GCM: NA/NA (CMIP5)/2020s,
2050s

t, p Tanzania - risk for dengue is currently concentrated in the
coastal areas
- large-scale spread is projected for 2050s

[100]

Aedes aegypti, Aedes
africanus, Aedes albopictus

Biomod2
ensemble model

GCM: HadGEM2-ES/RCP8.5/
2050s

t, p, NDVIg Global - Zika’s distribution may be far more constrained
than dengue
- Zika is unlikely to become cosmopolitan in
temperate regions

[80]

Aedes aegypti, Aedes
albopictus

Maxent 6 GCM/B1, A1B, A2/2050s t, p Global - complex global rearrangements of potential
distributional areas under climate change
- digitization and sharing of existing distributional
data for vectors needs to be a priority

[101]

Aedes albopictus GARP GCM: MPI-ESM-LR/RCP 4.5/
2050s, 2070s

t, p Mexico, US,
Italy, Brazil, Asia

- ENM fit on occurrence data from different regions
transfer to Mexico well

[102]

Maxent RCM: COSMO-CLM/A1B/
2020s, 2050s, 2080s

t, p, cargo
movement

Europe - combining ENM with measures of cargo
movement can help to identify hot spots for
potential areas of introduction
- availability of transport data in Europe needs to be
improved

[103]

Maxent GCM: CSIRO-Mk3.6.0/RCP
2.6, 4.5, 6.0, 8.5/
2030s, 2050s, 2070s

t, p Germany - establishment in Germany is possible
- northward range expansion under climate change

[104]

Anopheles arabiensis LOBAG-OC GCM: Hadley CM 3/A1B, A2A,
B2A/2050s

t, p Africa - the suitable range for the vector in Africa will be
strongly reduced under climate change

[105]

Anopheles darlingi, Anopheles
nuneztovari

Maxent GCM: GISS-E2-R, HadGEM2-
AO/RCP 2.6/2050s, 2070s

t, p,
topoh, soil moisture,
popi, lcovj

South America - vectors are projected to experience range
expansion under climate change

[43]

Anopheles spp. Maxent, BRT GCM: GISS-E2-R, HadGEM2-
ES/RCP 8.5/2070s

t, p,
topo, terrestrial
biomes

South America - current main vector will experience reduced
habitat suitability under climate change
- other species of the genus show significant
potential for expansion

[44]
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Table 1. (continued)

Vector/pathogen
modelled

ENM Climate modela/scenariob/
future time periodc

Environmental
variables

Country, region Main findings Refs

Anopheles, An. dirus, An.
minimus, An. lesteri, An.
sinensis

Maxent GCM: BCC-CSM1-1,
CCCma_CanESM2, CSIRO-
Mk3.6.0/RCP 2.6, 4.5, 8.5/
2030s, 2050s

t, p, lcov China - the different vector species’ ranges will react
differently to climate change
- an overall net increase in the population exposed
to the vectors is expected

[46]

Culicoides imicola, C. insignis,
C. variipennis, C. sonorensis,
C. occidentalis, C. brevitarsis

Maxent 62 GCM/RCP 2.6, 4.5, 6.0,
8.5/2050s

t, p Global - potential distribution is projected to broaden
under climate change, especially in central Africa,
United States and western Russia

[106]

Culicoides imicola CLIMEX GCM: CSIRO-MK3.0, Miroc-
h/A1B, A2/1975, 2030s,
2070s

t, p, rhk[437_TD$DIFF], irrigation Global - vector’s potential distribution under climate
change is projected to expand northward in the
northern hemisphere
- potential distribution may contract in Africa

[41]

Culicoides sonorensis Maxent GCM: CanESM2/RCP 2.6,
4.5, 8.5/
2030s, 2050s

t, p, topo, lcov, VPDl North America - the current northern range limit of the vector is
expected to shift northward under climate change

[42]

Lutzomyia evansi,
Lutzomyia longipalpis

Maxent GCM: CSIRO/A2, B2/2020s,
2050s, 2080s

t, p,
topo

Colombia - the range of the vectors is projected to decrease
in size under climate change

[45]

Lutzomyia intermedia,
Lutzomyia neivai

GLM, MaxEnt,
RF, SVM, GARP

GCM: HadGEM2-ES/RCP
4.5, 8.5/2050s

t, p South America - the different vector species show a different
response to climate change
- ‘Ecological niche models should be species
specific, carefully selected and combined in an
ensemble approach.’

[81]

Lutzomyia flaviscutellata 6 SDM 17 GCM/RCP 4.5, 8.5/2050s t, p [N/n]orthern
South America

- the suitable area for the vector is projected to
expand towards higher latitudes and altitudes
under climate change

[82]

Lutzomyia major,
Lutzomyia tropica

biomod2
ensemble model

GCM: MPI-ESM-LR/RCP 4.5/
2050s

t, p Libya - coastal regions of Libya show higher risk because
of more suitable climate
- risk of cutaneous leishmaniasis is projected to
increase under climate change

[107]

Chikungunya Maxent 5 GCM/RCP 4.5, 8.5/2030s,
2050s, 2070s

t, p, pop Global - transmission potential is projected to increase
across the globe under climate change
- some parts of India may see a relative decrease in
transmission

[20]

aNames of the climate models being used (RCM or GCM, see Glossary and Box 1), unless their number exceeds 5.
bClimate change scenario: typically RCPs and/or scenarios following SREP, see Glossary.
c2030s etc. = marks the center of the 30-year time period covered, stands for 2021–2040 or 2020–2039 depending on data source.
dNA = information not available.
et = temperature.
fp = precipitation.
gNDVI = normalized difference vegetation index.
htopo = topography (elevation, altitude, slope, aspect ratio).
ipop = human population density.
jlcov = land cover, land use.
krh = relative humidity.
lVPD = vapour pressure deficit.
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pathogens [1]. This makes them a practical tool for understudied, that is, ‘neglected’ VBDs.
However, this comes at the price of accuracy, and consequently ENMs are most useful on
medium to large spatial scales. If at least some of the environment-dependent mechanisms are
known, those can be used to refine the results [47]. And finally, estimates of distributions or
abundances of host and vector species derived from ENMs can also serve as input data for
mechanistic models [9].

Mechanistic Models
Mechanistic models are built on biophysical relationships between environmental factors
vectors, pathogens, and hosts (Figure 2). These relationships are generally derived from
laboratory- or field-based studies (see also section ‘Adaption and Evolution’). Different mecha-
nistic approaches can be applied. The most common methodology is derived from the
standard Ross–MacDonald model [3] or its generalization. A set of differential equations define
the different compartmental stages of vectors and hosts (susceptible, exposed, infectious, and
recovered for SEIRmodels, or susceptible, infectious, and recovered for SIRmodels).This set
of equations can be directly utilized to model the population size in each compartment, based
on their relationship to climatic factors [48]. The steady-state solution of this system of
differential equations also yields the basic reproduction number, R0. R0 is commonly employed
in epidemiology to estimate the propensity of an outbreak to expand (R0 >1) or to shrink (R0 <1)
in a fully susceptible population. Mathematical formulations of R0 are available for several VBDs.
They depend on the number of vectors and hosts considered in the model; see, for example,
[49] for a one-host–one-vector formulation of R0 for malaria, [50] for a two-host–one-vector
formulation of R0 for African trypanosomiases, or [51] for a one-host–two-vector formulation of
R0 for Zika. Other empirical mechanistic models are based on environmental risk factors, such
as fuzzy logic models to simulate the risk of malaria [52], or empirical-rule-based models, to
assess the risk of helminth infections in ruminants based on soil moisture availability and
temperature conditions [53].

Mechanistic models can be utilized to model the risk of VBDs backwards (using past environ-
mental data) or forwards (using demographic, economic, and climate-change scenarios) in
time. They are generally driven by daily or monthly climate data to simulate the burden of a
particular VBD. Their complexity varies; some models include additional effects of population
density, surface hydrology [54], and herd immunity factors [55].

In terms of methodology, the first necessary step (which is common to all modelling
approaches) is model validation. For this purpose, mechanistic models are run for the past,
and the output is compared to observed VBD burden indicators in space and time. This can be
a daunting task as this step depends on the quality and spatiotemporal coverage of observed
disease burden information (prevalence, incidence, number of confirmed cases etc.). Different
skill scores (like AUC, correlations, or reliability diagrams) are employed to estimate the model
capability in reproducing past observed outbreaks and mean seasonality of a VBD. The
mechanistic model is then projected forward in space and time, using calibrated climate model
data outputs and population scenarios, to estimate future human populations at risk (see
[56,57] for malaria).

Another significant progress lies in the study of historical VBD outbreaks and their relationship
with climate variability. An R0 model showed optimal climatic conditions when an outbreak of
bluetongue occurred in northern Europe in 2006 [58]. A similar modelling framework highlighted
optimal environmental conditions for mosquito-borne transmission risk of Zika virus over South
America in 2015, when the largest outbreak occurred [51]. These findings are consistent with
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former results by Patz et al. [59], who showed the capability of a mechanistic model to
reproduce past dengue outbreaks over Nicaragua, Honduras, and Thailand. Another advan-
tage of mechanistic models lies in their integration with operational seasonal climate forecasting
systems to anticipate the risk posed by a particular VBD for the upcoming season [60–62].
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Figure 2. Typical Workflow of a Mechanistic Disease Model Derived from the Ross–MacDonald Framework
[R0(T) Model]. (A) Dynamical model framework. T = temperature (�C); b = vector–host transmission probability; b = host-
–vector transmission probability; m = vector-to-host ratio; r = recovery rate; d = infectious recovery rate; a(T) = vector
biting rate per day; EIP(T) = 1/y(T) = extrinsic incubation period in days; m(T) = vector mortality rate. (B) Epidemiological
parameters derived from laboratory experiments or field data are fed into the model to gain an estimate of R0(T). (C) A risk
map is derived from the model. (D) A set of future climate-change scenarios and relevant time frames is chosen. Shown
here is the observed and expected future average temperature increase over time for an optimistic (blue) and a pessimistic
(red) climate-change scenario. Color shadings around the black lines show an estimate of the uncertainties. (E) Using data
from global or regional climate models, further projections for the selected scenarios and time frames (grey vertical bars in
panel E) are made. Ideally, different climate models are used to drive the model.
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Most mechanistic models tend to project an increase in VBD transmission risk to higher
latitudes and elevation in the future (Table 2). However, marked differences are shown in
the literature, depending on the considered VBD, the studied region, the selected GCM and
emission scenario, and the employed disease and vector model. Future risk of malaria
transmission is generally expected to increase in the tropical highlands, particularly in eastern
Africa where the local population will be highly susceptible to infection [57,63–65]. Conversely,
malaria transmission risk is likely to decrease over the warmer plains of western Africa [57] and
at the fringes of its current distribution across the Sahel. Rift Valley fever might also be on the
rise in eastern Africa in future [66]. The West Nile virus transmission season in the USA might
lengthen, leading to increased disease burden [67]. Important mosquito vectors such as Aedes
albopictus and Aedes aegypti, which are competent to transmit dengue, Zika, and chikungu-
nya, are expected to spread further north in Europe [39,68,69] and North America [70], while
their future range might contract over the tropics due to extreme temperature conditions
[39,68–70]. The diseases they transmit, like chikungunya and dengue, are likely to follow similar
trends [71–75].

Mechanistic models can be useful; however, there is still room for improvement. Because they
require dynamic drivers available in both space and time, they often lack important parameters,
such as socioeconomic and vulnerability indicators, land-use change factors, host immunity
parameters, population movement, and indicators of disease-control measures in place. This
caveat is a critical point, in particular when considering the progress made in malaria control
over the African continent during the past decades, in a warmer climatic background [76].

Challenges in Modelling Vector-[436_TD$DIFF]Borne Diseases under Climate Change
Using Climate Data in VBD Modelling
The usage of both ENM and mechanistic models has proven to be useful in anticipating the
spread of invasive vector species. One of the best examples is the Asian tiger mosquito, Ae.
albopictus, one of themost invasive species worldwide. Several modelling studies, based solely
on environmental factors, anticipated the spread of Ae. albopictus in many European countries,
years before that species was introducediii [457_TD$DIFF] [77,78].

Future projections of diseasemodels need to be carried out for an ensemble of calibrated global
(GCM) or regional (RCM) climate models (Box 1), because of the different sensitivities of these
climate models to global warming. GCMs are often favoured over RCMs, even for national-
scale models. This might be related to the output from GCMs being readily available in
preprocessed formats from data portals such as worldclim.com or ccafs-climate.org. Output
from RCMs is usually free to use for scientific purposes as well, but often requires additional
processing before it can be easily utilized by the impact modelling community. Simulating the
impact of extreme weather events on the VBD burden remains difficult, in particular when using
climate-change scenarios. However, sensitivity experiments could be designed to test the
sensitivity of VBD models to idealized temperature and rainfall distributions.

The climatemodel outputs used to drive themodel, such as rainfall and temperature, have to be
statistically calibrated (‘bias correction’) with respect to observed climate [79]. This is an
important necessary step because VBDs are sensitive to critical climatic thresholds – for
example, Plasmodium falciparum transmission by Anopheles mosquitoes starts when the
temperature exceeds [459_TD$DIFF]18�C [61]. Impact simulations have to be driven by an up-to-date
ensemble of emission scenarios (representative concentration pathways, RCPs), consis-
tent with the guidelines of the Intergovernmental Panel on Climate Change (IPCC), in
order to provide decisionmakers with a range of best- andworst-case scenarios. The impact of
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Table 2. Recent Studies Using Mechanistic Models to Assess Vector-[436_TD$DIFF]Borne Disease Risk under Climate Change

Vector/pathogen
modelled

Model type Climate modela [438_TD$DIFF]/scenariob/
future time periodc

Environmental
variables

Country,
region

Main findings Refs

Aedes
albopictus

Mapping indicators of
climatic constraints

10 RCM/RCP 4.5, 8.5/2020s,
2050s

td pe North America - northward range expansion
predicted under climate
change
- additional field studies and
surveillance needed to better
identify relevant environmental
factors

[70]

Multi-model approach:
climatic suitability,
seasonal activity

RCM: EBU-POM/A2/2010s,
2080s

t, p,
photoperiod

Serbia - most of Serbia is projected to
become significantly more
suitable for the vector under
climate change

[68]

Fuzzy logic GCM: EMAC, CMIP5 multi-
model ensemble/A2, RCP 8.5/
2050s

t, p, rhf Global - environmental conditions in
the tropics are projected to
become less suitable under
climate change, while
suitability increases in other
regions

[69]

Aedes
aegypti

CLIMEX GCM: CSIRO-Mk3,MIROC-H/
A1B, A2/2030s, 2070s

t, p, rh Global - environmental conditions in
the tropics are projected to
become less suitable under
climate change, while
suitability increases in other
regions

[39]

Anopheles
gambiae,
Anopheles
arabiensis

CLIMEX 0.1 and 2.0�C increase by
2100; increased precipitation
seasonality

t, p, rh Africa - climate change effects on
vector distribution are
projected to be strongest in
eastern and southern Africa

[40]

Avian
malaria

Epidemiological model RCM: HRCM/A1b, RCP 4.5,
8.5/2010–2100 (continuous)

t, p Hawaii - abundance and diversity of
Hawaiian bird populations are
projected to decrease under
climate change due to higher
potential for avian malaria
- current conservation
strategies are insufficient

[108,109]

Chikungunya R0 RCM: CRCM5/RCP 4.5, 8.5/
2020s, 2050s

t, p Canada - the current risk for
chikungunya in Canada is low
- small parts of southern
coastal British Colombia are
projected to become
progressively suitable under
climate change

[71]

Dengue Ross–MacDonald
(relative vectorial
capacity)

5 GCM/RCP 8.5/2080s t, DTRg
[439_TD$DIFF] Global - there is a strong connection

between epidemic potential
and diurnal temperature range
- large increases in epidemic
potential are projected under
climate change

[72]

CIMSiM, DENSiM [440_TD$DIFF]+1�C t, virus
importation
rate

Malaysia - moderate increases in
temperature do not
necessarily lead to greater
incidence

[110]

GAM and uncertainty RCM: COSMO-CLM/A1b/
2020s, 2050s, 2080s

t, p,
rh, poph,
urbanisation,

Europe - climate change is likely to
contribute to increased
dengue risk

[73]
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Table 2. (continued)

Vector/pathogen
modelled

Model type Climate modela [438_TD$DIFF]/scenariob/
future time periodc

Environmental
variables

Country,
region

Main findings Refs

GDP per capita
and population
size

CIMSiM, DENSiM GCM: ECHAM5/A2, B1/
2050s

t Australia - depending on which climate
scenario is used, dengue risk
may be projected to increase
or decrease

[74,75]

Dirofilariasis GIS-based NAi (Russian Committee of
Hydrometeorology)/NA/2030

t Former USSR - an increase of potential
transmission area and
population exposure is
projected under climate
change

[111]

Malaria Five malaria models:
LMM_RO, MIASMA,
MARA, VECTRI, UMEA

5 GCM/RCP 2.6, 4.5, 6.0, 8.5/
2030s, 2050s, 2080s

t, p,
socioeconomics

Global - an overall global net increase
in climate suitability and
population at risk is projected
under climate change. Future
risk increases in tropical
altitude regions

[57]

R0 GCM: HadCM3/A1B/2020s,
2050s, 2080s

t, NDVIj, pop Africa - a modest increase in the
overall area suitable for malaria
transmission is projected
under climate change, with a
net decrease in the most
suitable area

[63]

Malaria Ecology Index 16 GCM/A1B/2080s t, p Global - a strong increase in malaria
R0 is projected under climate
change

[112]

VECTRI GCM: CanESM2, MPI-ESM-
LR, IPSL-CM5A-LR, MIROC-
ESM/RCP 2.6, 8.5/2030–
2099

t, p, pop,
lcovk

Africa - land use change effects on
climate are projected to be of
minor importance for malaria

[64]

VECTRI, LMM 5 GCM, 18 RCM/
RCP 2.6, 4.5, 6.0, 8.5/2020s,
2050s, 2080s

t, p, pop Eastern Africa - malaria transmission is
projected to move to higher
altitudes under climate change

[65]

Epidemiological model:
lifetime transmission
potential

8 GCM/A2/2050s t Kenya - downscaling of coarse-scale
GCM output can improve
epidemiological models

[113]

Rift Valley fever LRVF GCM: GFDL ESM 2M/RCP
4.5, 8.5/2011–2050, 2051–
2099

t, p Eastern Africa - there is a high risk for further
spread of RVF under climate
change

[66]

West Nile fever DyMSiM GCM: NCCSM/A2, B1
/2050s, 2090s

t, p US - vector activity is projected to
lengthen under climate change

[67]

aNames of the climate models being used (RCM or GCM, see Glossary and Box 1), unless their number exceeds 5.
bClimate change scenario: typically RCPs and/or scenarios following SREP, see Glossary.
c2030s etc. = marks the center of the 30-year time period covered, stands for 2021–2040 or 2020–2039 depending on data source.
dt = temperature.
ep = precipitation.
frh = relative humidity.
gDTR = diurnal temperature range.
hpop = human population density.
iNA = information not available.
jNDVI = normalized difference vegetation index.
kIcov = land cover, land use.
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initial conditions used to perform the long-term climate change scenarios also needs to be
investigated to provide additional uncertainty estimates. Ideally, uncertainties related to the
disease models, the different climate models, and the various emission and population path-
ways have to be communicated to end users [77], and this is a difficult task. Overall, the usage
of different climate models and emission scenarios in various future risk assessments of VBD
has greatly improved over the past 10 years for Europe and theworld (Tables 1 and 2), thanks to
significant funding efforts from national and European research councils.

Model Approaches and Their Comparability
The parallel or joint use of multiple disease models within the same study in order to gain more
reliable results is increasingly common (Tables 1 and 2; [44,57,65,80–82]). However, there still
appears to be a gap between the mechanistic and correlative modelling communities, with
studies utilizing both approaches being rare exceptions. This may reflect differences in the
underlying paradigms leading to scepticism towards the unknown, but also with differences in
model outputs (e.g., R0 vs. ‘suitability’) that make direct comparisons difficult. The Coupled
Model Intercomparison Project (CMIP) has done an excellent job in setting standards for climate
models and thus granting comparability of models created by researchers across the globe. A
similar project for VBDmodelling could potentially work in a similar manner by defining standard
output variables for all disease models. Such a large intercomparison of impact models was
pioneered by the ISI-MIP project [83] but it should be further encouraged and funded in the near
future to include a larger ensemble of disease and vector models.

Cross-Sectoral Comparison of Climate Change Impacts
Changing long-term trends, extreme weather events, and climate variability have various direct
and indirect impacts which will increasingly interact. For instance, there are negative con-
sequences of climate change on biodiversity [84], which, in turn, is closely related to ecosystem
functioning and services [85]. A loss of biodiversity and ecological complexity is likely to have
consequences for the stability and resilience of ecosystems. For example, a loss of native
predators or reduced competition through native mosquitoes may facilitate establishment of
invasive vector species such as Ae. albopictus. As human society depends on these traits in
many sectors (e.g., health, food production, and economy), these negative feedback loops can
hardly be ignored. Biodiversity and ecosystem functioning are also buffering the impacts of
climate change and particularly of climatic extremes [86]. Additionally, climate change may
have an influence on poverty [87] and can hamper food security [88], which can further increase
the population’s vulnerability to VBDs.

Clearly, there is a need for multisectorial risk assessments, including the links between climate
change impacts on agriculture and food production, water resources, biodiversity and eco-
system services, and health.

Health and Vector Data Availability
One of the greatest challenges in VBD modelling, regardless of the type of model being
used, is undoubtedly the acquisition of the required input data. Much can be learned from
the climate-modelling community, which is well organized and publicly shares their data on
the centralized repository of the Earth System Grid Foundation (ESGF, https://esgf.llnl.gov).
Such a repository, that is jointly used by all scientists across the globe [460_TD$DIFF]for occurrence
records of arthropod vector species [461_TD$DIFF], is currently still missing [462_TD$DIFF]. A promising attempt in this
direction is the VectorMap platform offered by the Walter Reed Biosystematics Unit of the
Smithsonian Institution (http://vectormap.si.edu), where entomologists can share their field
records with the scientific community. For Europe, the VectorNet project hosted by the
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European Centre for Disease Prevention and Control and the European Food Safety
Authorityiv follows a similar approach, but only publishes maps at a ‘regional’ level without
providing scalar coordinates. Another interesting approach is followed by the German
‘Mückenatlas’ citizen science project (https://www.mueckenatlas.de). Here, the general
population is asked to catch and send in mosquitoes (along with information on time of
capture and location) which will be identified by experts and entered into a database (not
publically accessible yet). For important mosquito vectors, publicly available global occur-
rence data sets exist (e.g., Ae. aegypti and Ae. albopictus [89]), but they currently do not
offer the possibility for real-time updates of newly found records. While these examples are
a step in the right direction, what is ultimately needed is a unified, publicly accessible global
database for vector-occurrence records. The Global Biodiversity Information Facility (http://
www.gbif.org) already provides such necessary infrastructure; it is now up to the VBD
community to realize and optimize its potential.

In theory, for human- or livestock-related cases of VBD it should be relatively easy to
compile anonymized, georeferenced global databases. The data for this exist, at least for
communicable diseases that are recorded by the national health agencies, but are difficult
to access. Current global systems, such as ProMED-mail, HealthMap, or WHO’s Global
Outbreak Alert and Response Network (GOARN), mainly communicate current cases and
outbreaks, rather than providing an accessible, structured archive of laboratory-confirmed
cases. The Global Health Data Exchange (http://ghdx.healthdata.org) has the potential to fill
this niche if spatiotemporal resolution of the data can be improved. The Malaria Atlas
Project is an example of good practice: globally observed malaria prevalence data and ENM
model outputs can easily be accessed and downloaded from the related web site (http://
www.map.ox.ac.uk). At the European level, the Expert Groups of Health Information (EGHI)
and Health System Performance Assessment (HSPA) are currently working on improving
the health data information structure. However, this is a difficult task as there are many
parties involved [90]. Of course, observed health data can suffer from a variety of problems
related to the consistency of disease surveillance systems (over/under-reporting issues),
the quality and modus operandi of public health systems in a given country and region, or
the accuracy of diagnostic tests to confirm clinical cases. Still, it can be gathered in a much
more systematic and comprehensive way than any kind of vector-occurrence data.

Adaptation and Evolution – A Stony Path
Another critical point is evolution and adaptation. Important model parameters, such as biting
rate, EIP, or mortality rate, are very often derived from old published studies (see e.g., [91,92]
for the EIP of dengue). Vectors and pathogens have changed over recent decades, and there
is a significant need to improve and update what K. Lafferty calls ‘thermal response curves of
VBD’ [93]. There is huge potential for vectors to mutate and adapt to new environmental
conditions; and a vector’s adaptation can greatly vary in space and time. New mosquito
infection experiments that are conducted in the laboratory are needed and should be
performed at various temperature and humidity conditions, using different strains of pathogen
and fresh vectors collected from different populations [94]. Because vectors rarely experience
laboratory conditions, these experiments should further be complemented by field studies
[95] to also better estimate vector mortality, the relationship between local rainfall and carrying
capacity, and vector-to-host ratios, and to track the evolution of vector behaviour in the field.
Overall, interdisciplinary approaches, involving health specialists, field entomologists, biolo-
gists, mathematicians, and climate scientists, are and will be key to improving VBD models in
the future.
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Climate Services – The Connecting Bridge
Climate services translate climate data and information into customised tools, products, and
information to support decision-makers to make informed decisions when addressing existing
or emerging risks. Although various good examples for the implantation of climate data in VBD
risk assessment already exist, the lack of transfer of knowledge outside the scientific realm
often prevents practical applications of the gained insights. Bridging this gap between science
and the public sector is essential for developing solutions to climate change [96]. One example
is the ‘Healthy Futures’ project that aims to communicate several aspects of high-impact VBDs
in eastern Africa through an interactive online atlas (http://www.healthyfutures.eu/).

Concluding Remarks and Future Perspectives
Great progress has been made in understanding the possible impacts of climate change on
VBDs by means of correlative, mechanistic, and hybrid models. The increasingly common use
of ensemble models is an important step towards better reliability and assessment of uncer-
tainties. However, mechanistic and correlative models are still mostly used separately. It is now
time for researchers from different backgrounds to join their forces to bring VBD research and
modelling to the next level.

Although methodological approaches and climate change input data have improved, open
questions remain (see Outstanding Questions). Cross-sectoral comparison of climate change
impacts is in its infancy and needs to be assessed by multisectorial risk assessments at the
agriculture, water resources, and health nexus. The development of climate service tools based
on mechanistic and ecological niche models is needed to guide decision-making processes.
There is a need for perturbed parameter experiments for mechanistic models and large
multivariate statistics for ENMs to describe models’ uncertainties. Model outputs have to
be validated with respect to observed health data. The impact of climate modes of variability on
VBD burden in Europe, for example, North Atlantic Oscillation and Atlantic Multi-Decadal
Oscillation, has not been investigated and tested in detail yet. Mosquitoes and pathogens
have also evolved: there is a need for new field- and laboratory-based studies in closer
cooperation with modellers to improve model parameter setting. Further integration of remotely
sensed data will also support the development of operational forecasting systems and early-
warning systems.

In conclusion, after many decades, during which VBDs hardly played a role in Europe,
awareness is rising. It is important in times of climate change and globalization to build up
appropriate competences and bring together existing knowledge in research in close cooper-
ation with policy, practitioners, public health, and the population concerned, to develop tools
and measures that can identify, anticipate, assess, and mitigate risks at an early stage. Of great
importance is knowledge already gained in more affected areas of the world to develop
concepts and models which can be adapted for temperate regions under changing climatic
conditions. That is what Jürg Utzinger, in a recent presentation at the ‘Impact of Environmental
Change on Infectious Diseases’ conference in May 2017, in Trieste, called the ‘need for reverse
innovation’.
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