

Asian Federation of Ecological Societies (EAFES)

Plant production studies in Haean in 2010 Steve Lindner

Introduction

Methods:

Portable closed chamber system CO_2/H_20 porometer CQP-130 Ech20 logger

Results 2009

Conclusions & Outlook

Plant production studies in Haean in 2010

Introduction:

Soil respiration $R_{soil} = CO_2$ release from the bare soil **Ecosystem respiration** $R_{eco} = CO_2$ release from the soil (R_{soil}) + plant (R_{plant})

Light chamber:

Net ecosystem exchange NEE = GPP + Reco

Gross primary production (GPP): rate at which an ecosystem's producers **capture and store** a given amount of chemical energy **as biomass** in a given length of time.

Plant production studies in Haean in 2010

Steve Lindner

Introduction:

Figure 1: Applied light and dark gas exchange chambers for measuring the NEE and R_eco

- 5 crops / 1 field per crop in 2009 (rice, radish, potato, cabbage, bean)

- Up to 9 plots per field:
 - 4 crop plots / replicates
 - 3 weed plots (not so successful)
 - 2 bare soil plots

Figure 2: Installed soil frames $(38 \times 38 \text{ cm}^2)$ as a base for the gas exchange chambers

Plant production studies in Haean in 2010 Steve Lindner

Methods: Portable closed chamber system

Figure 1: Applied light and dark gas exchange chambers for measuring the NEE and Reco

Figure 2: Installed soil frames (38 x 38 cm²) as a base for the gas exchange chambers

- Daily courses
- At least 3 times/ growing season and crop
- Intensified measurements on the Radish field with different fertilizer treatments
- NEE, Reco, Rsoil
- Microclimate
- Biomass leaves/ stem/ roots
- C/N content

- Detailed information of plant reaction to environmental factors in small scale (1-2 plants enclosed)

- Up scaling of CO₂ fluxes up to landscape level

TERRECO-02: Spatial assessment of atmosphere-ecosystem exchanges via micrometeorological measurements, footprint modelling and mesoscale simulations Peng Zhao, Johannes Lüers, Thomas Foken, Chong Bum Lee

- Validation of the Pixgro model

TERRECO-15: Comparisons of net ecosystem CO₂ exchange, carbon gain, growth and water use efficiency of agricultural crops in small catchments in Korea Bora Lee, John Tenhunen, Sinkyu Kang

Plant production studies in Haean in 2010

Steve Lindner

Methods: CO₂/H₂0 porometer CQP-130, Fa. WALZ, Effeltrich, Germany

- Measuring leaf gas exchange (photosynthesis or respiration of the leaf can be measured)

- In relation to microclimate

101

Plant production studies in Haean in 2010

Steve Lindner

Methods: AWS & Ech2o logger

- Soil moisture content and soil temperature

- Automatic Weather Station for continuous recording of climate parameters (air temperature, relative humidity, solar radiation, wind speed and direction, rainfall)

Plant production studies in Haean

Steve Lindner

Daily course of NEE from a conventional potato field

TERRECO

Seasonal course of CO_2 fluxes from cabbage

Hyperbolic light response model (Michaelis-Menten type model)

- Used Michalis - Menten / rectangular hyperbola model to estimate model parameters for ecosystem/ leaf level gas exchange

$$NEE = -\frac{\alpha \cdot \beta \cdot PAR}{\alpha \cdot PAR} + \gamma$$

Gilmanov et al, 2003

Physiological parameters:

 α is the initial slope of the light response curve and an approximation of the canopy light utilization efficiency β is the maximum NEE of the canopy

Y is an estimate of the average ecosystem respiration (Reco) occurring during the observation period

- Estimated parameters to describe gas exchange capacity of potato

Plant production studies in Haean Steve Lindner

<u>Results:</u> 2009

Plant production studies in Haean

<u>Results:</u> 2009

Conclusions & Outlook:

- One place, one season, gives standardized abiotic conditions for all crops
- Gain basic understanding of how these crops interact with their physical environment
- Use the data for model parameterization using e.g. light response curves, physiological carboxylase based process model
- Compare the differences in CO₂ exchange rates among crops

```
→ Why?
Identify the determinants of crop CO<sub>2</sub> exchange rates =
e.g. type of crop, LA, biomass, C/N content, light use efficiency, soil properties
NEE = GPP + Reco
```

In order to:

- \rightarrow Identify the most constraining factors on crop production & carbon exchange in Haean
- \rightarrow Understand and quantify the processes of agro- ecosystem functioning

Flux Regulation, N Balances and Production in Agroecosystems of Haean Catchment

Objective

Understand ecosystem fluxes and measure their impact on:

- 1) Environmental sustainability
- 2) Ecosystem service provision

Main assumption

Ecosystem processes & fluxes both impact functioning and *interact with each* other

- Separate measurements of each process cannot account for such interactions
- ➔ In order to fully apprehend the set of parameters that influence production and sustainability, an <u>interdisciplinary approach</u> is necessary

Integrated approach to the measurement of ecosystem processes

Use of an identical field setup with coordinated measurements by multiple disciplines

Flux Regulation, N Balances and Production in Agroecosystems of Haean Catchment

I. Nutrient cycling: N fluxes and N balances J. Kettering, S. Berger

II. CO₂ fluxes and plant production S. Lindner, B. Lee

III. Herbivory and pest control E. Martin

Flux Regulation, N Balances and Production in Agroecosystems of Haean Catchment

What are we measuring?

Experimental setup

- 16 plots = 4 * 4 fertilizer levels ٠ → 50 - 150 - 250 - 350 kg N/ha
- Harvest of subplots after 25, 50 and 75 days ٠
- Fertilizer application: reproduce as closely as ٠ possible the practices of local farmers
- granulate mineral fertilizer ٠

Ploughing

May

Disking

Recommendation of Korean Agricultural Center: up to 400 kg N/ha

Usual amount in Germany: 50-150 kg N/ha

