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Abstract
Objective: To present a non-classificatory technique of map 
representation of compositional patterns of vegetation as no 
two plant species assemblages are completely alike and gra-
dations often occur. Variation is depicted as continuous fields 
instead of classes.
Location: Murnauer Moos, Bavaria.
Methods: The study combined vegetation ecology and remote 
sensing methods. The gradual representation of compositional 
patterns was based on techniques of ordination and regression, 
instead of mapping class fractions. The floristic field data 
were collected in relevés and subjected to three-dimensional 
non-metric multidimensional scaling (NMS). The reflectance 
information corresponding to plots was gathered from remotely 
sensed imagery with a high spectral resolution. Reflectance 
values in numerous wavelengths were related to NMS axes 
scores by partial least squares regression analysis. The regres-
sion equations were applied to the imagery and yielded three 
grey-scale images, one for each ordination axis. These three 
images were transformed into a red, green, and blue colour 
map with a specific colour for each position in the ordina-
tion space. Similar colours corresponded to similar species 
compositions.
Results: Compositional variation was mapped accurately (R2 
= 0.79), using continuous fields. The results took account of 
various types of stand transitions and of heterogeneities within 
stands. The map representation featured relatively homogene-
ous stands and abrupt transitions between stands as well as 
within-stand heterogeneity and gradual transitions.
Conclusions: The use of NMS in combination with imaging 
spectroscopy proved to be an expedient approach for non-
classificatory map representations of compositional patterns. 
Ordination is efficiently extended into the geographic domain. 
The approach in abandoning pre-defined plant communities is 
able to reconcile mapping practice and complex reality.

Keywords: Floristic composition; Gradient; Gradual transition; 
Hyperspectral; Pattern; Plant community; Remote sensing; 
Vegetation mapping. 

Nomenclature: Wisskirchen & Haeupler (1998) for phanerogams; 
Smith (1980) for mosses; Rennwald (2000) for syntaxa.

Abbreviations: NMS = Non-metric Multidimensional Scaling; 
PLS = Partial least squares regression.

Mapping the floristic continuum: 
Ordination space position estimated from imaging spectroscopy

Schmidtlein, S.1,2*; Zimmermann, P.1; Schüpferling, R.1  & Weiß, C.3

1Biogeographie, Universität Bayreuth, DE-95440 Bayreuth, Germany; 2Current address: Geographisches Institut, Uni-
versität Bonn, DE-53115 Bonn, Germany; 3Sektion Geographie, Universität München, DE-80333 München, Germany; 

E-mail c.weiss@iggf.geo.uni-muenchen.de; *Corresponding author; E-mail s.schmidtlein@uni-bonn.de

Introduction

 Most maps of vegetation at the stand level, including 
maps derived from remote sensing, consist of classified 
patches with sharp boundaries dividing them. Such 
maps do not take into account the various types of stand 
transition and the variation within stands. Sharp map 
boundaries do not necessarily follow concrete, local 
discontinuities – at least when such discontinuities are 
considered as a within-class variation (Zonneveld 1974). 
When a compositional within-class variation is ignored, 
many differences between stands are lost, and the degree 
of fuzzyness of the concrete boundaries is completely 
disguised. The fact that conventional vegetation maps 
reduce imprecise boundaries to mere lines has often 
been criticized (e.g. Zonneveld 1974; Kent et al. 1997). 
The ʻsoftness  ̓of a boundary may be an expression of 
relevant processes like disturbance, invasion, or disin-
tegration; transitional zones are frequently associated 
with problems of environmental management, and a 
proper map representation can be advantageous (Weaver 
& Albertson 1956; van der Maarel 1976; Hobbs 1986; 
Fortin et al. 2000). Transitional zones are highly affected 
by environmental change, since species are often at the 
limit of their tolerance. Accordingly, the movement 
of vegetation boundaries may indicate environmental 
change (Fortin et al. 2000). However, for monitoring 
spatial shifts of ʻsoft  ̓transitions, linear boundaries are 
unsuitable because they introduce spatial uncertainty 
(Foody 1996; Green & Hartley 2000).
 A less apparent problem is the classificatory step 
that precedes the assignment of concrete, local stands 
to types of vegetation. It takes for granted that plant 
species assemblages recur, or compositional gradients 
can be dissected in a helpful way. This issue has caused 
controversy in the past (see Mueller-Dombois & Ellen-
berg 1974), which can be traced back to the historical 
antagonism between the community concept (Humboldt 
1807) and alternatives such as the individualistic view 
or the continuum concept (Gleason 1926; Austin 1985). 
Since class limits in feature space (and the criteria for 
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defining them) tend to be a source of dispute and uncer-
tainty, it is an obvious thing to search for complementary 
mapping methods that do without classification.
 In the present paper, we aim to introduce such a 
complementary, non-classificatory mapping method with 
the goal of pattern recognition in mixed stands, based on 
remote sensing and ordination. Some desirable proper-
ties would be inevitable by-products of a comprehensive 
non-classificatory approach: compositional variation 
would be depicted in continuous fields instead of linear 
boundaries, and much of the concrete, local variation in 
plant species composition and the degree of ʻsoftnessʼ 
of concrete boundaries would be shown. This includes a 
proper representation of truly abrupt boundaries.
 Currently, there are two groups of methods for con-
tinuous representations of floristic composition in remote 
sensing. The first is still classificatory because the mapped 
values are proportions of classes. Vegetation is thought to 
form ʻgrey zones as transitions between presumed veg-
etation types  ̓(Mucina 1997, p. 758). These approaches 
refer to the idea of vegetation as a mixture of class frac-
tions or at least as something that can be numerically 
described as a mixture of class fractions; graduation is 
seen, but without abandoning abstract classes (van Niel 
& Lees 2003). Class fractions as continuous fields can 
be derived with variable success from linear unmixing 
(Roberts et al. 1998), spectral angle mapper (de Lange 
et al. 2004), maximum likelihood classifier, or neural 
networks (Foody 1996). In these algorithms, fractions 
are computed by relating reflectance in pixels to refer-
ence spectra or training pixels that represent classes. As 
long as single species are defined as constituents, such 
approaches could be a good starting-point for an ex post 
derivation of compositional patterns. However, these 
approaches are limited to species-poor environments 
(Townsend 2000). When the constituents are already 
mixed vegetation (Foody 1996), the idea of selected 
spectra representing classes becomes problematic since 
there is not always a reason for claiming one stand as 
being more representative than another (Townsend 
2000). Here, the selection of single reference spectra 
representing typical or extreme stands may introduce an 
inauspicious reduction of deducible compositional states 
of vegetation. In some approaches, within-class variation 
is taken into account by multiple reference spectra, which 
allow for more flexible class limits (Roberts et al. 1998; 
de Lange et al. 2004; Dennison et al. 2004). Still, these 
attempts aim to optimize classes.
 The second group of remote sensing methods for 
continuous representations of vegetation goes without 
classifying steps. These methods are frequently used 
for representations of biochemical or structural canopy 
properties. These studies (e.g. Smith et al. 2002; Oppelt 
& Mauser 2004) use regression models where reflect-

ances in wavelengths serve to predict canopy chemistry 
or structure. The main obstacle in transferring these 
methods to an application in organismic applications 
is transforming floristic information into a manageable 
set of metric variables ready for regression. Ordination 
methods can transform large species-by-plot matrices 
into few dimensions, where each plot composition cor-
responds to a specific range of scores, and these scores 
can be used as response variables in modelling.
 Ordination methods provide quantitative access to 
transitions in plant species composition without forcing 
any classification. Unlike field mapping, remote sens-
ing has the potential to extrapolate such quantitative, 
continuous, floristic information from the plot into the 
surrounding area. Unfortunately, this potential remained 
largely neglected. There are applications of Canonical 
Correspondence Analysis in remote sensing (CCA; van 
de Ven & Weiss 2001; Ohman & Gregory 2002), an 
algorithm that performs an ordination of the field data 
and relates it to predictors (in this case, the image infor-
mation) in one go. As in multiple regression analysis, 
multicollinearity in predictors gives rise to unstable solu-
tions (McCune & Mefford 1999). This causes limitations 
in the use of remote sensing data with a high spectral 
resolution.
 For a more flexible selection of methods, ordination 
and regression analysis can be separated. Thessler et al. 
(2005) combined Non-Metric Multidimensional Scal-
ing (NMS; Shepard 1962) with an adaptation of the 
k-nearest neighbour (kNN) procedure. Schmidtlein & 
Sassin (2004) used a Detrended Correspondence Analy-
sis (DCA; Hill & Gauch 1980) in combination with a 
partial least squares regression (PLS; Wold 1966). In 
the present study, NMS and PLS are linked to provide 
a methodical pathway that combines the advantages of 
a non-parametric ordination with a regression method 
capable of taking account of the information in numer-
ous correlated spectral bands of the imagery. The latter 
ability is essential to make full use of the huge amount 
of valuable detail provided by contemporary imaging 
spectroscopy. Imaging spectroscopy is based on a spa-
tially contiguous detection of reflectance signatures. The 
reflectance in each pixel is measured in adjacent, nar-
row spectral bands. The technique has been evolving in 
remote sensing since the late 1980s and is also referred 
to as hyperspectral imaging (van der Meer & de Jong 
2001; Aspinall et al. 2002; Ustin et al. 2004).
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Material and Methods

At a glance 

 The floristic field data were collected in ground 
relevés and arranged in a virtual similarity space using 
three-dimensional NMS. Three NMS axis scores were 
assigned to each plot describing the position in the or-
dination space. The reflectance spectra corresponding to 
plots were taken from the remotely sensed imagery and 
used to compute a PLS regression between reflectance 
values in different wavelengths (predictors) and axes 
scores (responses). The resulting regression equations 
were applied to the imagery, resulting in three grey-scale 
images, one for each ordination axis. Colour scales (red, 
green, blue) were assigned to the three axes, and the three 
greyscale images were transformed into a red-green-blue 
colour map with a specific colour for each position in the 
ordination space. Similar species compositions resulted 
in similar colours.

Study site and data

 The study took place in the Murnauer Moos area in 
Bavaria (at 47°39' N, 11°11' E, ca. 790 m a.s.l.). The area 
comprises a mosaic of raised bogs, poor fens, tall sedge 
beds, reed swamps, and wet meadows (Kaule 1974). 
Most of the area was traditionally mown for litter, and 
parts of it are now subject to land management contracts 
between the local conservancy authority and farmers; 
other parts feature different successional stages or near-
natural vegetation. From this mosaic, an area of 20.5 ha 
was selected where a co-occurrence of distinctive and 
inconspicuous, gradual and abrupt transitions between 
different compositions of plant species is found.
 The floristic field data were collected in 44 plots, each 
consisting of three subplots. The subplot design (Fig. 1) 
served for an estimation of plot homogeneity. It is useful 
to have information on the homogeneity before relating 
ground plot data to reflectance data extracted from im-
agery. The distances between the centres of the circular 
subplots were 5 m, and each subplot had an area of 4 m2. 
All subplots were marked with magnetic markers. The 
plots were arranged in a systematic grid at distances of 
ca. 80 m and localized at an accuracy of ± 0.3 m using 
differential GPS.
 The vascular plants and dominant mosses and lichens 
occurring were registered in the summer of 2004, with 
their percentage cover in subplots. These cover values 
were averaged at the plot level and log-transformed. In 
the following analyses, both the log-transformed data and 
the untransformed data were used, but the transformed 
data performed slightly better, so this paper refers only to 

these results. The plot homogeneity was calculated using 
Bray-Curtis distances between subplots. Three plots that 
appeared unusually heterogeneous were excluded from 
further analyses, leaving 41 plots for the next processing 
steps.
 The imagery had been collected one year before, using 
the airborne imager HyMap. This sensor measures reflect-
ance in 126 bands in three wavelength regions between 
0.45 and 2.5 mm and with bandwidths of 15-20 nm. 
Noise-affected bands at 438 nm and 450 nm, 1404-1475 
nm, 1795-2009 nm, and 2389-2483 nm were removed, 
leaving 105 bands for the analysis. Data were acquired 
on 22 July 2003 at 9:25 (UTC). The imagery was not 
subjected to atmospheric correction, since spectra for 
calibration were not taken from independent sources but 
derived instead from the imagery (Aspinall et al. 2002). 
All calculations and considerations are based on radiance 
measured at the sensor. However, for simplicity, we refer 
to reflectance instead of measured radiance. These data 
were transformed by log (1/R), where R was the radi-
ance. This ̒ pseudo-absorbance  ̓tends to be near-linearly 
related to the true absorbance of materials (Kumar et al. 
2001). For comparison, the untransformed data were also 
used.
 The spatial resolution in the area of investigation was 
about 6 m × 4 m. Geolocation and image geocorrection 
were based on a differential GPS, an inertial measurement 
unit (both on board) and a digital elevation model (DEM). 
Owing to the almost flat terrain, a course DEM resolution 
of 50 m was considered sufficient. The final registration 
to an ortho-image from the land surveying administration 
(resolution 0.4 m) resulted in a root-mean-squared error 
(RMSE) of position of 0.66 m.
 The reflectance spectra associated with the plots were 
taken from the imagery. To this end, the spectra of the 
pixels that hit the corresponding subplot centres were 
averaged. Before averaging, the homogeneity of reflect-
ance was checked as expressed by the Euclidean distances 
between the spectra of a plot. One heterogeneous plot 
was removed, leaving 40 plots for the final analysis.

Fig. 1. Plot consisting of three circular subplots. This arrange-
ment allowed for an estimation of plot homogeneity.
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Ordination

 The similarity patterns among plots were derived 
using a three-dimensional NMS. This ordination method 
arranges plots so that the rank order of similarities cor-
responds to the rank order of Euclidean distances in the 
ordination space. In order to avoid local minima, the 
best solution out of 9999 iterations was selected. The 
underlying distance measure for the original data was the 
Bray-Curtis distance. For ease of interpretation, the NMS 
data space was rotated by principal component rotation 
so that the first axis expressed the maximum floristic 
variation (Clarke 1993). This did not affect the relative 
position of plots in the ordination. The variance explained 
by NMS was assessed by computing the coefficients of 
determination between distances in the ordination space 
and in the original species data. The ordination and test 
were implemented using PC-ORD software (v. 4, MjM 
Software, Gleneden Beach, OR).

Regression

 The NMS ordination transformed the complex flo-
ristic field data into three metric variables that could be 
regressed against reflectance data. The algorithm used 
was the PLS regression (Wold 1966; ter Braak & de Jong 
1998). Only one ordination axis was modelled at a time 
(PLS1 regression). PLS1 is based on the decomposition 
of the predictors into latent variables that are used after-
wards in the regression step. Unlike principal component 
regression (PCR), the latent variables are calculated in a 
way that combines a good representation of predictors 
and response. Like PCR, PLS can handle numerous, cor-
related predictors – a typical situation in remote sensing 
applications with numerous wavelength bands. Because 
of the low number of samples, regression models were 
validated by full leave-one-out cross-validation. In this 
procedure, several submodels are computed in which all 
samples are left out one by one for validation (Efron & 
Tibshirani 1993). The PLS regression method is affected 
by overfitting when too many latent variables (PLS prin-
cipal components) are included in the regression. Overfit-
ting was avoided by repeating the described validation 
procedure, adding more and more latent variables. The 
model with the number of latent variables causing the 
smallest validation errors was selected.
 A proper variable selection could enhance the model 
results. The wavelength bands were selected that gave 
significant results in Martens  ̓uncertainty test (Martens 
& Martens 2000; Davies 2001). This test was based on a 
validation of regression coefficients in the sub-models of 
the cross-validation. The differences between the coef-
ficients in the sub-models and the coefficients in the full 
model indicate the stability of a variable. Removal of vari-

ables with unstable coefficients reduced the validation 
errors of the final models. The PLS regression analyses 
were implemented using Unscrambler software (v. 8.0, 
Camo, Oslo).
 The resulting three regression equations (one for each 
axis) were applied to the digital aerial imagery, resulting 
in predictions of NMS axes scores for every pixel in the 
image or in three greyscale images representing three 
NMS axes. Even when the NMS ordination space has 
been rotated to fit the first axis to the largest variation in 
the data, the interpretation of a single axis often makes 
little sense with NMS. While an interpretation of single 
axes would be best when referring to the three separate 
grey-scale images, the interpretation of relative positions 
in the ordination space is facilitated by a colour composite 
of all three images.
 Hence, a colour scale was assigned to each axis 
image, and the three images were combined into a red-
green-blue colour composite. Each colour corresponded 
to a particular species composition, and similar colours 
represented similar compositions. A coloured map legend 
representing the NMS ordination space allowed for a 
direct comparison between colours, the relative positions 
in the ordination space, and the distributions of diagnostic 
species. It is also possible to relate a classification to the 
ordination space and to show this relation in the legend. 
This does not affect the map itself, so the non-classifi-
catory nature of the map remains untouched. In order 
to show how a locally accepted classification scheme 
can be assigned to the legend, plots were classified by 
phytosociological ̒ table work  ̓(Mueller-Dombois & El-
lenberg 1974) and assigned to syntaxa using Oberdorfer 
et al. (1993-1998).
 In order to estimate the combined errors of NMS 
and PLS, the validation output from PLS regression was 
compared with the original, untransformed species data. 
The variance explained was assessed by computing the 
coefficients of determination between distances in the 
predicted Euclidean ordination space and in the original 
species data (Bray-Curtis distances).

Results

Ordination

 In field sampling, between six and 34 plant taxa per 
plot and a total of 112 taxa were registered. The three-
dimensional NMS of the species data reflected 98.1% of 
the total variation in the original distance matrix. After 
the principal component rotation, 70.7% of variation was 
related to the first axis, 18.7% to the second, and 8.7% 
to the third.
 The distributions of characteristic species in the 



- Mapping the floristic continuum - 135

ordination space reflected the underlying compositional 
patterns. The largest floristic differences (largely reflected 
by the first axis of the rotated NMS) were found along 
an ombrotrophic–minerotrophic gradient between raised 
bogs (high cover of Sphagnum magellanicum and Erio-
phorum vaginatum) and fallow, species-poor wetlands 
with Molinia caerulea and Phragmites australis. At 
the extreme end of the gradient, the latter stands were 
mixed with nitrophilous species like Urtica dioica. The 
transitional vegetation in the centre of the ordination was 
characterized by cover of Trichophorum cespitosum. In 
the minerotrophic section of the ordination, there was an 
additional, detached group of plots, which represented 
mown mesotrophic wetlands with sparse stands of tall 
sedges (e.g. Carex elata, C. lasiocarpa) and representa-
tives of poor calcareous fens (e.g. Carex lepidocarpa, 
C. davalliana, and Campylium stellatum). This minor 
gradient between fallow and mown, minerotrophic 
wetlands was roughly paralleled by the second axis. The 
third dimension did not describe a particular additional 
gradient but emphasized some of the variation already 
observed along the first and second axes.

Regression

 When interpreting NMS, it is advisable to ask for 
positions in the multi-dimensional data cloud rather than 
for positions along single axes. However, the separate 
treatment of the three dimensions allowed the positional 
information to be projected into the geographic space. 
The parameters of the PLS regression models are sum-
marized in Table 1. The total variation in the predicted 
NMS scores (from cross-validation) expressed 78.7% 
of the original variation in the species-by-plot matrix 
(percentage of variance in distance matrix). As compared 
with the variance explained by the original NMS (98.1%) 
there was a loss of 19.4%, which is due to the modelling 
process. As for the PLS regression, the R2 in cross-vali-
dation was highest with the first axis (R2 = 0.92, Fig. 2). 
However, the results for the second and third axis were 

still very satisfactory (R2 = 0.82, 0.78, Fig. 2). For the 
first two axes, better model results were observed with 
pseudo-absorbance; for the third, the untransformed 
reflectance was used. The lower the predictive power 
of axes regarding floristic variation, the weaker was the 
interrelation with the reflectance or pseudo-absorbance. 
This is also expressed by the linear correlations between 
reflectance and axis scores (Fig. 3a) and by the number 
of wavelengths necessary for an optimum prediction. 
The first axis was best predicted by only nine spectral 
bands, the second axis by 20, and the third by 71. The 
typical errors of the models (RMSE) as measured in 
cross-validation were about one-tenth of an axis range.
 Linear correlations between reflectance and axes 
scores (Fig. 3a) are useful for an interpretation of the 
general behaviour of reflectance in the ordination space. 

Table 1. PLS regression models between ordination scores of 
40 plots and reflectance (R) or pseudo-absorbance, log10 (1/R). 
Min, Max = absolute range of the ordination axis values; # PC 
= number of principal components used in the final regres-
sion models; # Bands = number of predictor wavelengths; 
1 PC (RMSEval), 2 PC (RMSEval), etc. = root mean squared 
errors in cross-validations of models with increasing numbers 
of principal components included (* = final model);  R2

cal = 
coefficient of determination in model calibration; R2

val = coef-
ficient of determination in cross-validation (all coefficients are 
significant at the 0.001 level (***)). 

 NMS1 NMS2 NMS3

Reflectance log10 (1 /  R) log10 (1 /  R) R
Min –0.84 –0.87 –0.74
Max 1.27 1.10 0.60
# PC 4 5 4
# Bands 9 20 71
1 PC (RMSEval) 0.73 0.20 0.10
2 PC (RMSEval) 0.19 0.17 0.08
3 PC (RMSEval) 0.09 0.14 0.05
4 PC (RMSEval) 0.05* 0.08 0.02*
5 PC (RMSEval) 0.05 0.03* 0.02
6 PC (RMSEval) 0.05 0.03 0.03
R2

cal 0.94 *** 0.87 *** 0.82 ***
R2

val 0.92 *** 0.82 *** 0.78 ***

Fig. 2. Cross-validation of the predicted scores of plots on the three NMS axes.
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Fig. 3. a. Linear correlations between untransformed reflectance and NMS axes scores of plot samples. b. Weighted regression 
coefficients (Bw) of the wavelengths (original values of reflectance or pseudo-absorbance standardized, the most extreme values 
set to 100 or  –100%). The larger the distance to 0%, the greater was the relative importance of that specific wavelength for the 
prediction. Unlike the third axis, NMS1 and NMS2 were modelled by pseudo-absorbance. Hence, for better comparability, the y-
axis was mirrored for NMS1 and NMS2: symbols in the upper part of the graph always indicate a positive influence of the original 
reflectance on the prediction.

Fig. 4. Spatial representation of the NMS ordination. Similar colours indicate similar plant species composition. Masked (black) 
sections = forests and water bodies. Circles = sampling plots used in regression.  The NMS ordination diagrams display the distribu-
tions of diagnostic species in plots (coloured dots). The plots are arranged according to floristic similarities. The sizes of the dots 
symbolize the log-transformed cover of species (scaled to unit range); small, white dots indicate absence. The diagrams allow for an 
association between map colours and diagnostic species, the latter representing certain plant communities (see text). For example, 
Eriophorum vaginatum is diagnostic for raised bog vegetation and is limited to one corner of the ordination space. The pink colour 
of plots with Eriophorum vaginatum equals the colour of the map pixels assigned to these plots; hence, pink in the map indicates 
raised bog vegetation.
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They show that the typical spectral features of lush 
vegetation (Kumar et al. 2001), such as high reflectance 
in the green light section (around 540 nm) and in the 
near infrared (720-1400 nm), were negatively related 
to scores on the first and second axes. Correlations with 
the third axis were weakly opposed. The behaviour 
of the first axis is an expression of the association of 
raised bog vegetation and high scores. Along the second 
axis, low scores were associated with fallow meadows 
with more biomass and often a greater nutrient supply, 
resulting in correlation patterns similar to the first axis. 
These nutrient-rich stands are also found at the top of 
axis 3, thus explaining the weakly opposite correlations 
for this axis. The wavelengths used for the prediction of 
axes scores were distributed all along the spectrum (Fig. 
3b). The weighted regression coefficients show that the 
wavelengths with the most weight for the prediction were 
situated in the transition between red and near infrared 
(at 707 nm: axes 1, 3) and in the green area (at 508 nm: 
axis 2). Other important predictor wavelengths for axis 
3 were registered in the yellow light section (at 585 nm) 
and in the short-wave infrared (at 1795 and 2325 nm).

Map

 The spatially explicit representations of the three 
NMS axes were combined into a colour map (Fig. 4). 
The map shows the area of investigation with abrupt 
and gradual transitions between plant species composi-
tions. The actual occurrence of these transitions could 
be verified by field observations. The interpretation of 
the colours is possible by examining the distribution of 
diagnostic species in the coloured ordination space (Fig. 
4, legend). As an alternative, degrees of memberships are 
shown in Fig. 5 for the examples of the bog associations 
Sphagnetum magellanicum and Eriophoro-Trichophore-
tum cespitosi. Molinia caerulea (Fig. 4) represents the 
fallow, species-poor, mesotrophic wetlands with Molinia 

caerulea and Phragmites australis. These stands are 
shown in dark blue and green. Within these wetlands, 
the greenest spots represent richer sites along brooks 
(diagnostic species: Urtica dioica). Carex elata is a 
representative of the mown mesotrophic wetlands with 
sparse stands of tall sedges and plants of poor calcare-
ous fens. This community appears in light blue tones. 
Eriophorum vaginatum is a typical plant of the raised 
bogs, which are shown in pinks. The wettest parts (with 
the lightest pink) feature a high dominance of Sphagnum 
magellanicum. Forests and water bodies were masked, 
since no predictions were intended for these land-cover 
types. 

Discussion

 The present paper aims to introduce a non-classi-
ficatory mapping method for mixed stands. The goals 
were to depict compositional variation as continuous 
fields and to show as much as possible of the local vari-
ation in plant species composition. The results from the 
present study form one such representation of mixed 
stands. The map is, of course, a simplified picture of 
the true patterns, but it depicts much of the relationships 
between individual species compositions. Each pixel has 
the chance to be unique, and no typifying step took place 
prior to the interpretation of the resulting pattern.
The high coefficients of determination of the models may 
partly be caused by the presence of ̒ long  ̓floristic gradi-
ents associated with considerable differences in growth 
forms and structural characteristics. Another factor af-
fecting the overall validation results is the selection of 
the validation method. Ideally, the test data would come 
from a new set of samples, but in the present study, there 
were not enough data available. In such cases, cross-
validation is a standard tool. With very small data sets, 
as in the present study, the omission of too many samples 
causes a pessimistic bias (Kohavi 1995). However, the 
selected method of omitting only one sample at a time 
preserves the spatial autocorrelation structure of the data. 
This means that the validation may have caused overly 
optimistic error estimates compared with a test with 
spatially independent data (Labovitz 1986). The spatial 
autocorrelation in the present data is caused by a dense 
sampling scheme (in other words, distances between plots 
are short as compared with the distance decay in floristic 
composition). This scheme was selected in order to thin 
out plots afterwards and to test the necessary sampling 
intensity. In our example, models based on half the plots 
still reached 84-97% of the predictive power of the full 
models (as expressed by the R2 in cross-validation). For 
future investigations, we suggest starting with a small 
number of relevés and adding relevés until a sufficient 

Fig. 5. These NMS Ordination diagrams display an ex post 
affiliation of plots to vegetation classes of a locally accepted 
classification scheme. In these examples, the size of the dots 
symbolizes relative plot memberships to classes. Euclidean 
distances between plots and class centroids were used as simple 
membership measures.
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model quality is reached. 
There was a gap of one year between the flight and ground 
investigations, and the year of image-data acquisition 
was particularly dry. If the spectral information associ-
ated with the calibration plots is extracted from the im-
age itself, as in this study, there is no strict necessity to 
carry out the field work at the same time as image-data 
acquisition. However, the floristic composition should 
change as little as possible. Since successional processes 
in the investigated systems are usually much slower, this 
is considered a minor problem and the accuracy of the 
results, as indicated by cross-validation, seems to confirm 
this assumption. Since no independent reference spectra 
were used, and no comparison with other images took 
place, no atmospheric correction was applied (Aspinall et 
al. 2002). However, in investigations of larger areas and 
in multitemporal analyses, atmospheric corrections are 
advisable, even if spectra are collected from the imagery 
(Aspinall et al. 2002).
 The use of spectra that are not collected from the 
imagery itself is probably not expedient. There are too 
many degrees of freedom in the relationship between 
floristic composition and reflectance to put confidence in 
spectral libraries. Typical examples of factors acting upon 
the relationship are phenological processes (Dennison 
& Roberts 2003) or short-term drought stresses (Carter 
1993). Field work will never be completely replaced by 
this kind of investigation, since calibration with samples 
from the area under investigation will remain a crucial 
step in deriving such maps. 
The spatial resolution of the imagery results in a mixture 
of different floristic composition at sub-pixel levels. The 
subplot design took account of this fact in preventing 
vegetation with considerably differing positions in the 
ordination space from being related to one single reflect-
ance spectrum. Nevertheless, some inevitable mixture 
should be expected, especially in the raised bog areas 
with their fine-scale mosaics consisting of hummocks 
and hollows. In these areas, recurring ordination scores 
refer to recurring vegetation mosaics.
 In addition to the dimension of pixels, the value of 
remotely sensed data depends on the spectral resolu-
tion. Imaging spectroscopy is the leading technique in 
this regard (Kumar et al. 2001; van der Meer & de Jong 
2001; Ustin et al. 2004). Further improvements could be 
achieved by multitemporal image data that takes account 
of phenological differences. Specific temporal patterns 
may reveal compositional differences that are otherwise 
difficult to map (Townsend & Walsh 2001).
In some cases, it might be advantageous to skip the a 
priori ordination and to use individual species models, 
which can then be aggregated in a post-processing step 
(van Niel & Lees 2003). However, in a case like ours, 
with 112 plant taxa, this means considerable effort, and 

if a representation of general compositional patterns is 
the goal, as in our case, some type of dimensionality 
reduction would be necessary anyway.
 Earlier studies have already shown that gradients 
depicted by DCA can be similarly modelled with the aid 
of imaging spectroscopy (Schmidtlein & Sassin 2004). 
However, in reading such gradient maps, gradients or 
axes per se played little role: in the end, map interpre-
tation was based on distances in colour space. Thus, a 
method that relies on distances in the similarity space 
was considered as more suited than a method that relies 
on gradients. NMS has an additional advantage: it pro-
vides an optimal representation of the floristic variation 
with a limited number of dimensions. For the purpose 
of a colour composite, three dimensions fit the needs. In 
DCA, parts of the information are lost to minor axes.
Of course, the presented method is not appropriate for 
all applications of conventional vegetation maps. For 
example, in conservation, it may be crucial if a place 
does or does not belong to a certain protected habitat 
type. In such cases, a combined representation with 
clear class limits may be appropriate. In some cases, 
the heterogeneity may be so high that one ordination is 
not able to represent the variation in a comprehensible 
number of dimensions (Whittaker 1972).
 Strictly field-based methods are not suitable for pro-
viding similar spatial information at a comparable level 
of detail. In the field, mapping compositional patterns 
as continuous fields is an almost impossible task. The 
method presented here may be suitable in many situations 
where pattern recognition is useful, and a representation 
of stand transitions and heterogeneities is needed. It may 
also be useful in cases where maps are needed, but no 
clear types can be identified.

Conclusions

 The use of NMS of species data in combination 
with imaging spectroscopy proved to be an expedient 
approach. In abandoning pre-defined plant communities 
during the mapping process, the authors tried to reconcile 
mapping practice and a reality where no two species 
assemblages are completely alike and where concrete 
stands sometimes grade into one another. The method 
presented here was judged to be satisfactory, since each 
pixel had the chance to represent an individual species 
composition without referring to any class membership. 
If more or less homogeneous areas emerge (as in our 
case), they are a true expression of community structure 
and not a matter of threshold decisions as in conventional 
vegetation maps. Ordination maps provide intuitive ac-
cess to similarity patterns, which are difficult to discern 
from categorical maps.
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 While conventional vegetation maps fit the commu-
nity concept, the present method conforms to both major 
paradigms of vegetation ecology. It fits the community 
concept because it is able to show recurring composition 
and relatively homogeneous areas. On the other hand, 
the method satisfies the presumptions of the individual-
istic or continuum concepts because each pixel has the 
chance to represent an individual composition. The use 
of more such maps would allow further studies on the 
conceptual aspects in vegetation ecology to be carried 
out, since ordination methods, which are normally used 
for revealing patterns in the coenospace, are extended 
into the geographic domain. Palmer & White (1994, p. 
281) proposed ʻnot to map the world onto our mental 
structures, but to re-wire our mental structures to reflect 
the worldʼ. We hope that the approach presented here 
will be useful in this sense.
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