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Background
There is still a debate if the Kobresia biome on the Tibetan Plateau is human

induced or climate driven. Grazing exclosure experiments show a fast

replacement of Cyperaceae by Poaceae. This points to a zoo-anthropogenic

influenced plant composition. We aimed to find biomarker to distinguish

between different grasses and herbs dominating under different conditions.

Conclusion
Hydrolysable aliphatic lipids derived from suberin and cutin are well suitable to

distinguish between different grasses and herbs indicating diverse grazing pressure.

Cutin and suberin are compounds with a high diagnostic value for vegetation history

of grasslands due to the preservation of species specific long-chain aliphatic lipids.
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Suberin and cutin signatures are used as biomarkers for determining soil organic 

matter (SOM) sources. 

Previous studies succeeded in differentiating between closely related tree 

species, e.g. fir (Abies alba), spruce (Picea abies) and douglas fir (Pseudotsuga

menziesii) (Spielvogel 2010). However, signatures of different  grasses and 

herbs have not been analyzed in detail, and it is unknown if they are identifiable 

in soil.

Fig 2: Schematic of exemplarily cutin and 

suberin location in plants, (a) cutin 

deposition in leaves (EW – epicuticular 

waxes, C – cuticle, Cl – cuticular layer)

(b) suberin deposition in roots (ML – middle 

lamellae, PW – primary wall, SW –

secundary wall, PM – plasma membrane,

Cy – cytoplasm, v – Vacuole)

Suberin and cutin…

… are ubiquitous in plants.

… are important components of  

hydrophobic layers in plant cell walls.

… play in an important role as barriers 

controlling gas-, water-, and nutrient 

transport in plants.

…are characteristic for roots (suberin) 

and leaves (cutin), respectively.

Pollard et al. (2008)

Method

Fig 6: Leymus and Kobresia pygmaea

Reting

Fig 5: Distribution area of Kobresia pygmaea 

and study sides 

Material
• Plants and soils from Kobresia dominated 

grasslands in a montane (near Xinghai) 

and an alpine (north of Lhasa) area

• 20 x 20 m fences inside Yak pastures, 

fenced 1997 (Reting) and 2002 (Xinghai).

• Monitoring of plant community 

composition inside exclosures and 

adjacent grazed area to indicate changes 

in  vegetation structure after fencing 

• Identification of characteristic plants for 

both treatments

• Analysis of root and shoot samples from

indicator plants: among others Kobresia

pygmaea (Cyperaceae, grazed), Leymus

spec. (Poaceae, ungrazed)

• Analysis of soil samples taken inside and 

outside the  grazing excluding fences
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Fig 3: Example  for suberin and cutin 

composition, respectively
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Analyses with GC-MS 

Kobresia shoots

A
b
u

n
d

a
n

c
e

Time

55

16

1.56

26

2.56

10 20 30 40 50 60 70

Leymus shoots

4.55

55

16

1.56

26

A
b
u

n
d

a
n

c
e

10 20 30 40 50 60 70

Time

Kobresia roots

55

16

1.56

26

2.56

10 20 30 40 50 60 70

C≥26

Epoxy C18

4.55

1.56

Time 

Leymus roots

45

55

16

10 20 30 40 50 60 70

C≥26

α-OH C24

ω-OH C24
A

b
u

n
d

a
n

c
e

A
b
u

n
d

a
n

c
e

Fig 7: Chromatograms of Kobresia (Cyperaceae) and Leymus (Poaceae) – shoots and roots 

• Chromatograms of plant materials show clear differences between grass species

• Signatures of roots and shoots are also different

• The suberin signature of Kobresia roots is characterized by several long-chain 

fatty acids > 26 C-atoms that are missing in Leymus roots 

Soil ungrazed plot – Poaceae dominated (5-15 cm)
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Soil grazed plot – Kobresia dominated  (5-15 cm)
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Fig 8: Chromatograms of soils sampled inside and outside the grazing excluding fence (montane area).

• Depth increment 0-5 cm (= dense root layer) mirrors root pattern

• Fatty acid signature of soils from areas of different altitude but similar vegetation  

did not differ

• The long-chain fatty acids signature typical for Kobresia roots decreased distinctly 

seven years after fencing

• Di-carboxylic acids seemed to have longer turnover times than ω-Hydroxy fatty

acids
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Fig 4: Examples for common suberin and cutin monomers


